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Abstract

Goal-conditioned policy learning for robotic manipulation presents significant chal-
lenges in maintaining performance across diverse objectives and environments. We
introduce Hyper-GoalNet, a framework that generates task-specific policy network
parameters from goal specifications using hypernetworks. Unlike conventional
methods that simply condition fixed networks on goal-state pairs, our approach
separates goal interpretation from state processing — the former determines network
parameters while the latter applies these parameters to current observations. To
enhance representation quality for effective policy generation, we implement two
complementary constraints on the latent space: (1) a forward dynamics model that
promotes state transition predictability, and (2) a distance-based constraint ensuring
monotonic progression toward goal states. We evaluate our method on a comprehen-
sive suite of manipulation tasks with varying environmental randomization. Results
demonstrate significant performance improvements over state-of-the-art methods,
particularly in high-variability conditions. Real-world robotic experiments further
validate our method’s robustness to sensor noise and physical uncertainties. Our
code and trained models will be made publicly available.

1 Introduction

Goal-conditioned policy learning enables embodied agents to adjust their actions based on current
state observations and specified goals [7, 25} |44]. By integrating goal information into decision
making, agents leverage knowledge across various tasks, enhancing adaptability [6} [11} [33] in
hierarchical reinforcement learning and complex imitation learning [4} [16] 47]].

Conventional approaches typically concatenate goal observations with current states as input to a
fixed-parameter network [8| 153} [51]. This design creates a fundamental limitation: the network must
process all possible goal-current state combinations using the same fixed weights, conflating “what”
to process (current state) with “how” to process it (goal-dependent strategy). Consequently, these
architectures often struggle with generalization to novel goals and complex manipulation tasks that
require different processing strategies depending on the goal specification.

We aim to rethink this relationship by treating goals not as additional input features but as specifica-
tions that determine how current observations should be processed. Hypernetworks — neural networks
that generate weights for another network — offer a natural implementation of this perspective. By
explicitly modeling goals as determinants of policy parameters rather than as inputs, hypernetworks
effectively disentangle task-dependent processing (defined by goals) from state-dependent processing
(applied to current observations) [18,43]]. This approach better aligns with biological goal-directed
behavior, where prefrontal regions interpret task goals and dynamically modulate processing in
sensorimotor circuits accordingly [30, 49].
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Figure 1: The proposed Goal-Conditioned Policy Generation framework (Hyper-GoalNet) and
conventional goal-conditioned policies. Existing methods typically employ a fixed-parameter
policy network that processes concatenated current observations and goal states, treating goals mostly
as additional inputs. In contrast, our approach formulates policy learning as an adaptive generation
task, where the goal image determines the parameters of the policy network itself — transforming
goals from inputs into specifications that define how current observations should be processed. This
allows for more effective handling of diverse goals and complex manipulation tasks.

To address these challenges, we present Hyper-GoalNet, a hypernetwork-based framework for
robotic manipulation illustrated in Fig.|l} Our approach employs a hypernetwork to dynamically
generate target policy parameters conditioned on specified goals. When loaded into the policy
network, these parameters enable the processing of current observations without requiring further
access to goal information. This architecture creates a clear separation of concerns: the hypernetwork
interprets what the goal means for processing strategy, while the generated policy focuses exclusively
on transforming current observations into appropriate actions. By training the hypernetwork to model
the conditional distribution of effective policy weights given goal specifications, we obtain a system
that can adapt its processing strategy to diverse manipulation tasks.

Our technical contributions center on effectively applying hypernetworks for parameter-adaptive
goal-conditioned policies learning. First, we adapt optimization-inspired hypernetwork architectures
for generating policy parameters conditioned on goal specifications, creating a framework that
dynamically determines how current observations should be processed. Second, we introduce an
effective latent space shaping technique that imposes two critical properties: (1) predictability of
future states through a learned dynamics model, and (2) preservation of physical relationships through
distance constraints that ensure monotonic progression toward goals. These properties create an
ideal representation space for our hypernetwork, providing clear signals about how policy parameters
should change as states approach goals.

Our extensive experiments across multiple manipulation tasks show that Hyper-GoalNet signifi-
cantly outperforms state-of-the-art methods, achieving higher success rates on complex contact-rich
manipulations. Notably, while conventional approaches fail almost completely in high-variability
environments, our method maintains robust performance. Ablation studies confirm the critical
importance of our proposed components in the parameter-adaptive goal-conditioned policy lean-
ing framework. Finally, real-robot experiments demonstrate that our parameter-adaptive approach
succeeds in physical environments where conventional methods struggle with sensor noise and
environmental variations. These results confirm that explicitly modeling goals as determinants of
processing strategy rather than as additional inputs creates a more effective and robust framework for
goal-conditioned manipulation.

2 Related Work

Goal-conditioned policy. Goal-conditioned policy learning has attracted significant attention for
developing versatile and generalizable agents [22, 50, 48l [23]]. Traditional methods augment state
spaces with goal information and train policies that condition on these augmented states [[12} 42}
28]. Hindsight Experience Replay (HER) [[1] exemplifies this approach by allowing agents to
learn from failures by reinterpreting unsuccessful outcomes as alternative goals. However, these



methods typically suffer from increased complexity and require extensive tuning to manage the
parameters associated with goal conditioning [37, 31}, [46]. Our approach distinguishes itself by
utilizing hypernetworks to dynamically generate policy weights, thereby reducing parameters in the
policy network while enhancing scalability without extensive retraining [[19, 41].

In the realm of imitation learning for goal-conditioned policies, several frameworks have demonstrated
promising results by learning from pre-collected demonstrations [27} 8, 51]]. Recent goal-conditioned
behavior cloning approaches such as C-BeT [8]] and MimicPlay [51]] have advanced long-horizon
manipulation tasks. However, these methods typically require sequences of achievable goal images,
which are challenging to obtain in practice. Moreover, while performing well in basic pick-and-place
scenarios, they often struggle with contact-rich tasks that demand precise environmental aware-
ness [29]. Our method overcomes these limitations through effective latent space shaping, requiring
only a single goal image while maintaining robustness across diverse manipulation scenarios.

Hypernetworks and Cognitive science insights for goal-directed behavior. Our work draws
inspiration from cognitive science research on human goal-directed behavior, where meta-cognitive
strategies and higher-level planning mechanisms enable adaptive actions [} 34} 35]]. Studies show
that humans efficiently manage cognitive resources and flexibly adapt to different goals through
higher-level representations [17, 10, 9]. Current policy learning methods incorporating cognitive
principles often focus on imitation learning to mimic human strategies [12, (15} [13]], but can be limited
by demonstration quality and diversity [36, 40, 21]]. While hypernetworks have been explored
in robotic control [20} [52] 3], they are not readily adaptable to goal image-conditioned behavior
cloning for complex manipulation tasks. By embedding cognitive insights into our hypernetwork
architecture, we emulate human-like flexible adaptation [5 34} 35]]. Hyper-GoalNet’s capacity to
generate goal-specific policy parameters without extensive retraining addresses practical challenges
of goal-conditioned learning [[19] while mirroring key cognitive mechanisms, offering a biologically
plausible framework for adaptable policy generation.

3 Method

Let D = {r;}, be a dataset consisting of M robotic manipulation demonstrations, where each

trajectory comprises a sequence of observation-action pairs, i.e., 7; = {(oé-, a;)}j\[:bl with a; denoting
a continuous-valued action and o; representing a tuple containing high-dimensional state observations.
Specifically, o; includes an RGB image I; captured by a single front-view camera, as well as the
proprioceptive information s; of the embodied agent. Given this formulation, our objective is to
develop a generalizable goal-conditioned policy learning framework that enables efficient adaptation

to diverse manipulation tasks.

We propose a shift from conventional goal-conditioned policies, which typically use fixed parameters
while processing both current and goal images. Our key insight is that the goal image inherently
specifies how the current image should be processed to generate appropriate actions. Therefore, we
argue that the policy parameters themselves — which determine the processing mechanism — should
adapt based on different goal specifications. To realize this insight, we leverage hypernetworks to
dynamically generate task-specific policy parameters conditioned on goal images, rather than directly
conditioning a fixed policy network on both current and goal observations. This approach creates a
more flexible and efficient framework where the processing of current states is explicitly tailored to
the specified goals.

The full pipeline is illustrated in Fig. 2] Next, we elaborate on the key components of our approach.
In Sec.[3.1] we describe how we adapt hypernetwork architectures to effectively generate varying
goal-reaching policies. In Sec.[3.2] we introduce an effective latent space shaping techniques that
significantly enhance the performance of goal-conditioned policy generation by enforcing meaningful
geometric structure in the representation space. Finally, in Sec. we present the test-time inference
pipeline that integrates our trained model (Hyper-GoalNet) to accomplish diverse manipulation tasks,
highlighting the practical advantages of our parameter-adaptive approach.

3.1 Goal-Conditioned Hypernetworks

We formulate goal-conditioned policy learning as a parameter generation task rather than a direct
conditioning problem. This formulation reframes the challenge from “what action to take given
current and goal observations” to “what processing parameters to use given the goal.”
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Figure 2: An overview of the proposed Hyper-GoalNet framework. (a) Adaptive Policy Genera-
tion: Unlike conventional approaches with fixed parameters, our hypernetwork dynamically generates
task-specific policy parameters conditioned on goal images. This creates a parameter-adaptive target
policy that processes current observations (RGB images and proprioception) through a multimodal
encoder to produce actions tailored to specific goals. (b) Latent Shaping: Our approach enhances
performance by explicitly structuring the latent space in two ways: a predictive network models state
transitions to improve temporal dynamics, while geometric constraints ensure distances to goal states
monotonically decrease during successful trajectories (detailed in Sec. @

More formally, given a current observation o, and a desired goal observation oy, we model the condi-
tional distribution over target policy weights that will transform the scene into the goal configuration.
With the set of robotic manipulation demonstrations D, we learn the distribution H (6 | o, 04):

H(O | oc,04) = IF’D(Q | 0. =1, 0g = It/)7 where I;, I € 7; € Dand t’ > t. (1

For practical implementation, we focus on a single goal state rather than a sequence of goals, and use
RGB image observations to condition the hypernetwork. Since our primary objective is to investigate
the efficacy of goal-conditioned policy generation for manipulation tasks rather than developing a
full probabilistic model, we approximate this as a deterministic mapping:

H:0x0— 0, @)

where O denotes the observation space and O represents the space of target policy parameters. With a
current-goal observation pair (o, 04 ), the hypernetwork H produces a policy that guides the transition
from current state o. to goal state o, through action execution.

Hypernetwork architecture. To implement our parameter-adaptive approach, we adopt a hyper-
network architecture that efficiently generates policy parameters for achieving specified goals. The
architecture must be capable of capturing the complex relationships between current states, goal
states, and the required actions to bridge them.

We leverage an optimization-inspired architecture following [38]], which provides beneficial inductive
bias for our parameter generation task. This approach mimics iterative optimization by refining policy
parameters through multiple feed-forward steps:

oK = H(oc, 0g), 3)

where 6% represents the final policy parameters after K refinement iterations, with each update
computed as:

oF = 0F=1 L X0 )9k (0F L ), a = ®(0c, 0g). )

Here, neural modules \* and 1/* serve as learned analogs to step sizes and gradients in optimization,
operating on embeddings ¢(o., 04) of the current and goal observations. This mechanism enhances
the hypernetwork’s ability to generate effective task-specific policy parameters and improves general-
ization to new goal specifications. Once we obtain the goal-conditioned policy weights 8, we can
process the current observation through the generated policy to predict appropriate actions.

Hypernetwork Training. We train our hypernetwork H : O x O — O to generate parameters
for the target visuomotor policy 7 (-; 8) using behavior cloning (BC) on demonstration data. The
generated policy takes the current observation o, (comprising image [; and proprioception s;) and
outputs actions for execution.



To enhance robustness, we utilize a sequence of L consecutive observations as input to the policy, cap-
turing temporal dependencies under a non-Markovian assumption. The training objective minimizes
the BC loss between demonstrated actions a} and predicted actions ay:

M
Epolicy = Z Z €(ai, dé)a di = 7T(OifL:t; H(Oi7 0175’)) (5)
=1 1<t<t'<N;

Here, ol ., represents L consecutive observations, and (o, o, ) are the current-and-goal image pair.
We restrict goal representations to image inputs since proprioceptive goal states may not always be
available in practical applications. This formulation allows the hypernetwork to learn how to generate
goal-specific processing mechanisms (target policy parameters) from visual goals, embodying our
key insight that goal images determine how current observations should be processed.

3.2 Latent Space Shaping

A critical insight in our approach is that the effectiveness of parameter-adaptive policies depends
significantly on the quality of the representation space in which observations are embedded. While
our hypernetwork can directly generate policy parameters from raw observations, we find that
explicitly shaping the latent representation space substantially enhances performance. Given the high
dimensionality and redundant information in RGB images, we employ an image encoder £ to extract
task-relevant features and compress them into low-dimensional latents z = £(I).

We identify two fundamental properties that, when enforced in the latent space, particularly benefit our
parameter-adaptive approach: predictability and physical structure preservation. The first property
ensures the latent space facilitates modeling of state transitions, making the hypernetwork’s task
of generating appropriate policy parameters more tractable. The second property ensures that the
geometric relationships in the latent space meaningfully reflect physical relationships between states,
enabling the generated policies to exploit these structured representations.

Enhancing predictability through dynamic modeling. To improve the predictability of latent
representations, we introduce a dynamics model that forecasts future states in the latent space. By
training this model to predict state transitions while simultaneously shaping the encoder £ through
backpropagation, we create a latent space where sequential relationships are explicitly captured. This
significantly benefits our hypernetwork, as it needs to generate policy parameters that leverage these
sequential relationships to guide transitions from current to goal states.

Formally, consider a discrete-time dynamical system with state representation z; € Z and control
input a; € A. The forward dynamic model is:

Zep1 ~ pa(2et1 | 2t ar), (6)
where z; = £(I;) represents the latent encoding at time ¢, a; is the executed action, and pg is the
transition dynamics parameterized by ®. For practical implementation, we approximate this with a
deterministic model ® : Z x A — Z. The corresponding learning objective minimizes the prediction
loss:

£pred = ETND [g(q)(zta at)a Zt+1)] ) (7)
where / is a distance metric in the latent space. When @ is well-trained, we further finetune £ through
& to shape representations that capture both current state and potential transition information.

Preserving physical structure through distance constraints. For our parameter-adaptive approach
to be effective, the latent space must preserve the physical structure of the task, particularly the
progression towards goals. We formalize this as a requirement that the distance between the current
state and goal state should monotonically decrease along goal-reaching trajectories. This property is
especially valuable for our hypernetwork, as it provides a clear signal about how policy parameters
should change as states approach goals.
Specifically, for any goal-reaching trajectory 7; € D, where 7; = {(o;'-, aé)}jvz‘l we enforce:
de(05,05) > de(0541,05), Vi <7, ®)
where dg denotes a distance metric in the latent space. To explicitly model this behavior, we propose
the following loss function:

Laist =Ernp Y max(0, B+ d(zj41,2) — d(2), 29)), ©)
J



where d(z1, z2) = ||z1 — 22||2 represents the Euclidean distance between latent features, z; = £(1;)
and z; = £(I,;) denote the image and goal image latents, respectively. The margin parameter 3 > 0
enforces a minimum decrease in distance between consecutive states and the goal. Empirically,
setting 8 = 0 suffices to induce the desired monotonic progression.

This shaped latent space creates an ideal foundation for our parameter-adaptive approach, as it encodes
both the predictive dynamics and geometric structure needed for the hypernetwork to effectively
generate goal-tailored policy parameters. Figure [3]illustrates how our latent space shaping approach
compares to alternative methods, showing the enhanced structure that benefits our goal-conditioned
policy generation.

3.3 Hyper-GoalNet for Manipulation

Having established our parameter-adaptive architecture and latent space shaping techniques, we now
present our complete framework, Hyper-GoalNet, which synthesizes these components for effective
goal-conditioned manipulation. The overall training objective combines our policy generation loss
with the latent space shaping terms:

EHyper—GoalNet = »Cpolicy + )\prcd »Cprcd + )\dist »Cdista (10)

where Apreq and Agig; are weight coefficients balancing the contributions of predictability and structural
constraints. The framework is trained end-to-end using gradient descent, allowing all components to
co-adapt for optimal performance.

During inference for task completion, Hyper-GoalNet generates goal-specific policy parameters
by feeding the concatenated latent features [z,, z;] into the hypernetwork #, where z, = £(I,)
and z; = £(I;) are the latent representations of the goal and current observations. The generated
goal-specific parameters § = # (2, z4) are then loaded into the target policy 7(-; #), which processes
the current observation sequence to produce actions that guide the agent toward the goal.

Hyper-GoalNet offers two principal advantages over conventional goal-conditioned policies:

1) Parameter-adaptive policy generation: By dynamically synthesizing policy parameters based on
goal specifications, our approach effectively changes how goal-conditioned policies operate. Rather
than relying on a fixed network with static parameters to handle all possible goals, Hyper-GoalNet
generates compact and efficient processing pathways that are tailored to specific goals.

2) Natural goal completion detection: Our shaped latent space provides an elegant solution to the
challenging problem of goal completion detection. The distance metric dg (o, 04) in the latent space
serves as a natural criterion for determining when a goal has been achieved, enabling autonomous
goal transitions without external supervision.

The test-time task evaluation procedure for Hyper-GoalNet is formalized in Algorithm[I] Given an
initial observation Iy and goal observation I, the algorithm iteratively generates policy parameters,
samples actions, and applies them until either the goal is reached (as determined by the latent distance
falling below a threshold €) or a maximum number of steps 7" is achieved. This simple yet effective
procedure demonstrates how our parameter-adaptive approach seamlessly integrates into practical
robotic control scenarios.

4 Experiments

In this section, we present a comprehensive experimental evaluation across a suite of simulated and
real-robot manipulation tasks designed to address the following questions: 1) How effectively does
Hyper-GoalNet’s parameter-adaptive approach generate successful policies for diverse manipulation
tasks? 2) To what extent does our latent space shaping enhance the performance of the hypernetwork
for goal-conditioned policy generation? 3) How does Hyper-GoalNet compare with conventional
goal-conditioned methods and alternative representation learning approaches? Through extensive
empirical analysis, we validate the effectiveness of our parameter-adaptive framework.

4.1 Experiment Setup

Simulation Environment. We evaluate our approach using Robosuite, a comprehensive robotics
benchmark designed for both short and long-horizon manipulation tasks [29,154]. This framework



Algorithm 1 Hyper-GoalNet: Test-Time Task Evaluation
Input: Initial observation Iy, Goal observation I,
Modules: Encoder &, Policy generation hypernetwork #
Parameters: Max steps 7', Goal completion threshold e
1: I; < Iy, t < 0, done < false
2: while ¢ < T and not done do

3: 0 < H(E(L),E(Ly)) > Generate policy weights
4: Gt + m(0t—r1.4;0) > Sample action
5: I;41,done < Env(ay) > Apply action and Env. interaction
6: if d(E(I441),E(Iy)) < € or done then

7: return SUCCESS

8: end if

9: It(—.[t+1,t<—t+1
10: end while
11: return TIMEOUT

provides a standardized suite of environments, from which we select multiple contact-rich tabletop
manipulation tasks: coffee manipulation, threading, mug cleanup, nut assembly, three-piece assembly,
and several long-horizon tasks including coffee preparation and kitchen manipulation. To assess
robustness across varying initial conditions, we use three difficulty levels (dg, d;, d2), where higher
indices correspond to increased environmental variability, particularly in object pose initialization
(position and orientation). Each experimental environment features a robotic manipulator positioned
adjacent to a workspace containing task-specific manipulable objects.

Training Protocol. Our approach follows the behavior cloning paradigm, utilizing a dataset based
on MimicGen [29]]. For each task, we employ a training dataset of 950 demonstrations, where
each timestep comprises front-view RGB images (128 x 128 resolution), robot proprioceptive states
s¢ € S, and corresponding ground-truth actions a; € .A. The training procedure employs the Adam
optimizer [24]] with a cosine learning rate schedule [26]. We initialize the learning rate at 5 x 10~*
and maintain uniform loss balancing coefficients (\; = 1 for all components). Our model is trained
for 500 epochs with a batch size of 256, by default. Detailed implementation and training protocols
are provided in the Sec.

4.2 Main Results

Baselines. We compare our parameter-adaptive approach against state-of-the-art goal-conditioned
methods that use fixed network parameters. All methods are trained on pre-collected demonstrations
from MimicGen [29]] and modified to operate with a single future image as the goal specification for
fair comparison:

* GCBC [27.114]: Goal-Conditioned Behavioral Cloning concatenates current and goal observations
as input to a fixed policy network, learning a direct mapping from this concatenated representation
to actions through supervised learning on demonstration data.

* Play-LMP [27]: Play-supervised Latent Motor Plans learns a latent plan space from demonstration
data, then trains a fixed-parameter policy conditioned on both the current state and the inferred
latent plan for the specified goal.

* C-BeT [8]: Conditional Behavior Transformer uses self-attention to compress observation history

into a latent representation, which is combined with the goal state to condition a fixed-parameter

transformer that predicts actions.

MimicPlay [51]]: MimicPlay is a self-supervised approach that learns general robotic skills from

unstructured teleoperation data, which consists of continuous sequences of observations and actions

from a human video.

Evaluation Metrics. We evaluate performance using task completion success rates over 50 inde-
pendent rollouts with randomly initialized, previously unseen environmental configurations. We
impose maximum trajectory lengths of 7" = 600 or 800 steps for contact-rich tasks and 7" = 1600
for long-horizon tasks. While our parameter-adaptive approach enables autonomous task completion
detection through latent space metrics (Algorithm [I)), we use environment-provided terminal signals



Table 1: Comparison with state-of-the-art goal-conditioned methods. Success rates (higher is
better) are computed over 50 rollouts across various manipulation tasks with increasing difficulty
levels (d0-d2). The experimental setup uses only two historical observations and a single goal image,
representing a practical deployment scenario. Our method consistently outperforms conventional
fixed-parameter approaches, demonstrating the effectiveness of dynamically generating policy param-
eters based on goal specifications.

Method Coffee 1 Mug-cleanup 1 | Three piece Assemb. T Threading 1 Nut Assemb. 1 Av
d0 dl  d2 Avg.| d0 dl Avg.| d0 dl d2 Avg.| d0 dl d2 Avg do &
GCBC 0.00 0.00 0.00 0.00 |0.00 0.00 0.00|0.00 0.00 0.00 0.00|0.00 0.00 0.00 0.00 0.00 0.00
Play-LMP | 0.00 0.00 0.00 0.00 |0.00 0.00 0.00 |0.00 0.00 0.00 0.00 |0.00 0.00 0.00 0.00 0.00 0.00
MimicPlay | 0.28 0.28 0.16 0.24|0.26 0.06 0.16|0.06 0.06 0.00 0.04|0.18 0.02 0.00 0.07 0.03 0.12
C-BeT 0.92 0.00 0.74 0.55|0.30 0.50 0.40|0.00 0.02 0.00 0.01{0.62 0.22 0.12 0.32 0.34 0.32
Ours [0.94 0.76 0.62 0.77 |0.78 0.46 0.62|0.52 0.20 0.04 0.25|0.82 0.32 0.24 0.46 | 0.55 | 0.52

Table 2: Long-horizon task performance. Our Table 3: Component ablation analysis. La-
parameter-adaptive approach excels in complex tent space shaping significantly enhances perfor-
sequential tasks, outperforming fixed-parameter = mance, while proper distance metrics and train-

methods across difficulty levels. ing are crucial for robustness.
Coffee Preparationt Kitchent Method Coffee 1

Method | "4y " g1 Ave. | d0 dI  Ave | AVE oo do di @2 A
Ours(uf. at epoch 0) 0.92 0.00 0.62 0.51

GCBC 0.00 0.00  0.00 |0.00 0.00 0.00 | 0.00 Ours(wio shiping) 0% 000 000 3

Play-LMP | 0.00 0.00 = 0.00 |0.00 0.00 0.00 | 0.00 Ours(dist«start img.) 0.50 0.52 0.32 0.45

MimicPlay | 034 0.00 0.17 |0.86 0.18 0.52 | 0.35 Ours(cos dist) 094 036 048 059

C-BeT 0.82 0.04 043 |0.78 0.70 0.74 | 0.59 C-BeT(w/ shaping) 080 064 064 069

Ours |0.80 0.50  0.65 |1.00 0.80 0.90 | 0.78 Oars | 094 076 o062 [T077

for standardized evaluation across all methods. Success is indicated as S; = 1 if rollout 7 completes
within T steps, and S; = 0 otherwise.

Quantitative Results. Tables[T|and 2] present success rates across multi-step and long-horizon tasks,
respectively. For each task, success is determined by task-specific criteria provided by the environment
— such as correct object placement, successful insertion, proper assembly configuration, or completion
of a sequence of subtasks for long-horizon scenarios. Our parameter-adaptive approach outperforms
fixed-parameter methods across these diverse evaluation criteria and difficulty levels. This superior
performance stems from our hypernetwork’s ability to dynamically generate task-specific policy
parameters tailored to each goal, resulting in more effective goal-directed behavior. Particularly in
high-variability environments (difficulty levels d1-d2), our method demonstrates greater robustness
and adaptability compared to conventional approaches — highlighting the advantage of having policy
parameters explicitly conditioned on goals rather than using fixed parameters for all scenarios.

4.3 Ablation Study

Hypernetwork Architecture Analysis. We evaluate  Taple 4: Ablating hypernetwork architec-
the effectiveness of incorporating an optimization-
inspired hypernetwork design in our parameter-
adaptive framework by comparing it with Hyper- Method Coffee

Zero [39], an alternative hypernetwork architecture, do dl d2  Avg
under identical training conditions. Table ] shows our Hyperzero | 0.00 0.00 0.00 = 0.00
chosen architecture consistently outperforms Hyper-
Zero, particularly when observational input is limited.
This demonstrates how the iterative refinement mech-
anism in our selected hypernetwork design better captures the relationship between goals and
appropriate policy parameters in our framework. These results highlight the importance of selecting
appropriate hypernetwork architectures when implementing parameter-adaptive policy learning for
goal-conditioned tasks. More details can be found in Sec.|[C]

tures under same training conditions.

Ours | 094 076 0.62 0.77

Latent Space Shaping Analysis. Table [3| shows that proper latent space shaping is critical for
our parameter-adaptive framework. Removing shaping (“Ours w/o shaping”) severely degrades
performance on harder difficulty levels, while our specific choices of using goal-relative distances
and Euclidean metrics prove superior to alternatives. Figure [3|visually confirms how our approach



creates more consistent monotonic progression toward goals compared to unshaped representations.
Notably, applying our shaping techniques to the baseline C-BeT improves its performance, yet its
performance lags compared to ours, which in turn signifies the importance of the parameter-adaptive
framework as well as the synergy between policy generation and latent shaping. Our training strategy
also matters — unfreezing the R3M visual encoder [32] only after 20 epochs ensures stable parameter
generation. These results validate our insight that latent spaces should reflect physical progression
toward goals to effectively support parameter-adaptive policy learning.

Visualization. Figures [3] and [7 illustrate how our vomr owesoees vems oees o
latent space shaping creates representations that di- Highly noisy trend Menatonic frend
rectly benefit our parameter-adaptive approach. Un-
like R3M embeddings which show significant fluc-
tuations, our method produces consistently mono-
tonic distance reductions toward goal states. This
structured latent space offers two key advantages soe ml e m o w m e w
for our hypernetwork: (1) it provides clearer sig- (c) R3M Embedding (6) Hyper-GoalNet Embedding
nals for generating appropriate policy parameters as
the agent progresses toward goals, and (2) it enables
reliable autonomous detection of task completion
based on latent distances. The visualization confirms
that our combined predictive modeling and distance
constraints create optimal representations for goal-
conditioned parameter generation, enhancing both
performance and interpretability.

Distance to the goal

Figure 3: Comparison of (a) unshaped R3M
embeddings versus (b) our shaped latent
space, showing L, distances to goal states
along multiple trajectories. Our shaping
creates consistent monotonic decreases in
distance-to-goal, facilitating more effective
parameter generation.

4.4 Real Robot Experiments

We validate our parameter-adaptive approachon Table 5: Real-robot experiment results (suc-
physical hardware using the Realman Robotics  cesses/total trials).

Platform, featuring a 7-DoF manipulator with
a 1-DoF parallel gripper (Figure[S). We eval- _ Method — Pickplace  Pull ~ Stack  Sweep

uate four diverse manipulation tasks — sweep, GCBC 0/15 0/15  0/15 2/15
pick&place, pull, and stack — with 15 trials per ~ Play-LMP 0/15 0/15  0/15 5/15
task. Due to hardware constraints limiting con- C-BeT 2/15 6/15  5/15 8/15
trol to joint angles without end-effector pose Ours 14/15 15/15  14/15  15/15

information, we exclude MimicPlay, which re-
quires precise 3D end-effector trajectories.

As shown in Table[5] conventional fixed-parameter approaches struggle significantly in real-world
conditions where environmental noise, perception uncertainties, and imperfect demonstrations create
substantial challenges. In contrast, our method maintains high success rates across all tasks, including
those requiring precise contact-rich interactions. This real-world performance gap highlights a
key advantage of our parameter-adaptive approach: by dynamically generating task-specific policy
parameters based on goal images, our method better adapts to real-world variations and demonstration
imperfections that weren’t encountered during training. Detailed experimental protocols are provided
in the Sec.[H

5 Discussion

Our parameter-adaptive approach represents an effective move in goal-conditioned policy learning
by dynamically generating policy parameters based on goals rather than using fixed parameters
with conditioning. The consistent performance improvements across tasks demonstrate that “how”’
observations should be processed is inherently dependent on the goal specification. Our latent space
shaping techniques prove critical for this architecture — imposing physical structure and predictive
capacity provides clearer signals for the hypernetwork to generate effective policy parameters. Overall,
our results suggest that explicitly modeling the relationship between goals and processing mechanisms
offers a promising direction for more flexible and robust robotic control.
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Appendix

In this section, we present supplementary materials detailing the methodological framework and
experimental procedures used in this study.

A Manipulation Task Details

Task Details. Our experimental evaluation was conducted within the Robosuite [54] simulation
environment, utilizing the benchmark dataset from Mimicgen [29]. We primarily investigated complex
tabletop manipulation tasks that encompass diverse robotic skills. The selected tasks are characterized
as follows:

* Coffee: A multi-step manipulation task requiring precise object handling, where the robot
must grasp a coffee capsule, insert it into the designated slot of the coffee machine, and
securely close the machine’s lid.

* Mug cleanup: A sequential task involving both articulated object interaction and object
placement. The robot must coordinate drawer manipulation and object transportation,
culminating in storage of a mug.

* Three piece assembly: A multi-step assembly task demanding spatial reasoning and precise
manipulation. The robot must stack three components in a specific sequence to achieve
compact assembly configuration.

* Threading: A high-precision manipulation task requiring fine motor control. The robot
must accurately orient and manipulate a needle for successful insertion through a minimal
aperture.

* Nut Assembly: A manipulation task involving precise grip control and spatial alignment for
successful mechanical assembly. In this task, the success rates for the two nuts are measured
separately, and the overall success rate is then calculated.

* Coffee Preparation: An extended sequential task combining multiple sub-goals, includ-
ing cup positioning, drawer manipulation, capsule retrieval, and coffee maker operation,
culminating in a fully prepared coffee setup.

* Kitchen: A complex sequence involving appliance interaction, object manipulation, and
spatial reasoning. The task includes stove operation, cookware handling, and precise object
placement.

These tasks are specifically selected for their comprehensive representation of challenging robotic
manipulation scenarios, featuring contact-rich interactions, precise object manipulation, and complex
multi-step sequences. Each task requires a combination of skills including spatial reasoning, and
sequential decision-making. The visual representation of these manipulation tasks and their key
phases are illustrated in Figure ]

Data Processing and Observation Space. The demonstration data from Mimicgen is initially
preprocessed by segmenting complete demonstrations into trajectory subsequences to facilitate
learning. Our framework implements a constrained observation context with a length of 2, including
front-view RGB images and the agent’s proprioceptive state information. This design choice means
that the agent’s decision-making process is based solely on the current frame and one historical frame,
deliberately limiting the temporal horizon to enhance real-world applicability. Given our focus on
goal-conditioned policy learning, the observation space of the hypernetwork is augmented with a
single RGB goal image representing a feasible target state. The input modalities are structured as
follows:

* Visual observations: RGB images with dimensions 128x128 pixels for both contextual and
goal representations.

* Proprioceptive state: A compact 9-dimensional vector encoding essential agent state infor-
mation.

This deliberately constrained observation space creates a partially observable environment that closely
aligns with real-world robotics scenarios, where complete state information is rarely available. While
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Figure 4: Key phases of diverse manipulation tasks in experimental evaluation.

this design choice enhances the practical applicability of our approach, it also introduces significant
challenges:

* Single-goal scenarios necessitate hypernetwork architectures to efficiently handle the de-
manding requirements of goal-conditioned policy generation.

 Limited temporal context requiring efficient use of historical information.
* Partial observability demanding robust state estimation and feature extraction.

» Complex vision-based reasoning with constrained visual information.

Such challenging conditions serve to validate our method’s effectiveness under realistic constraints,
demonstrating its potential for real-world deployment.

Goal Specification Strategy. Our approach implements a systematic strategy for goal specification
across both training and evaluation phases. During training, we employ a dynamic goal sampling
mechanism where the goal image is stochastically selected from future frames within the same
demonstration, subsequent to the current timestep. This design offers two key advantages:

* Goal Feasibility: By sampling from actual demonstration frames, we inherently guarantee
the physical feasibility and reachability of the specified goals.

* Goal Diversity: The random sampling mechanism ensures sufficient variation in goal states,
promoting the learning of a robust and generalizable policy.

During the evaluation phase, the goal specification mechanism leverages the Mimicgen framework to
generate feasible goal states, facilitating potential transfer from simulation to physical systems.

B Comparison with Baselines

Given the challenging nature of our experimental setting as shown in Table [I] existing baseline
methods demonstrate limited success in task completion. To ensure comprehensive evaluation, we
introduce modified versions of existing approaches and additional baseline methods adapted for
our scenario. The following section details these enhanced baseline implementations and their
comparative performance.
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Table 6: Additional quantitative experiments with more baseline methods across different tasks.
1 indicates methods using a sequence of visual frames as goals rather than a single goal image,
with an extended observation length of 10 frames versus the standard 2. I indicates methods with
access to extra wrist-mounted camera images. The wrist views, extended observation sequence, and
extended goal sequences provide richer observational and task-guidance information for augmented
baselines. Hyper-GoalNet leverages only one goal image and two front-view observations, indicating
a more easy-to-be-applied setup while being more effective.

Method Coffee 1 Mug-cleanup 1 | Three piece Assemb. 1 Threading 1 Nut Assemb. T Av
do dl d2 Avg.| d0 dl Avg.| d0O dl d2 Avg. | d0O dlI d2 Avg. do &
MimicPlay-Ot* 0.80 0.84 0.88 0.84|0.68 0.58 0.63|0.50 0.38 0.02 0.30|0.32 0.06 0.06 0.15 0.10 0.44
MimicPlay-M' 0.28 0.28 0.16 0.24|0.26 0.06 0.16|0.06 0.06 0.00 0.04|0.18 0.02 0.00 0.07 0.03 0.12
C-BeT [0.92 0.00 0.74 0.55]0.30 0.50 0.40|0.00 0.02 0.00 0.01|0.62 0.22 0.12 0.32] 0.34 0.32
Hyper-GoalNet(G) | 0.94 0.60 0.62 0.72 |0.72 0.54 0.63|0.46 0.22 0.02 0.23 |0.78 0.20 0.18 0.39 0.67 0.50
Hyper-GoalNet 0.94 0.76 0.62 0.77 | 0.78 0.46 0.62|0.52 0.20 0.04 0.25 |0.82 0.32 0.24 0.46 0.55 0.52

We also conducted additional comparative experiments with BeT [45]], C-BeT [8]], and MimicPlay [51]
(implemented in both its original setting and a modified setting). And a variant of our method, Hyper-
GoalNet(G) is also introduced. Experiments were performed across all 16 MimicGen tasks, with
results for contact-rich tasks and long-horizon tasks presented in Tables [6]and [7] respectively. Please
note that the success rates reported in Table[7]reflect a modified evaluation criterion in the simulation
environment, resulting in slight variations from the kitchen task results presented in Table[I} The
implementation details are explained below.

Details about the Baselines. We selected four task-specific baselines and reimplemented them
under settings generally consistent with Hyper-GoalNet. The reimplementation details are as follows.

* GCBC [27, [14]]: Goal-Conditioned Behavioral Cloning (GCBC) is the most general
framework for learning goal-conditioned policies. It consists of a perception module,
a visual encoder, and a RNN-based goal-conditioned policy module. GCBC takes
in a 9-dimensional proprioceptive state, a current front-view RGB image, and a goal
RGB image as input and predicts the action distribution to transfer the current state
to the goal state. The model is trained end-to-end with the objective of maximizing
the log-likelihood of the ground-truth action in the predicted distribution. The obser-
vation sequence length and the predicted action sequence length are both restricted to 5 steps.

e Play-LMP [27]]: Play-Supervised Latent Motor Plans (Play-LMP) builds upon the
foundation of GCBC, aiming to learn reusable plan representations and task-agnostic
control from play data. Play-LMP consists of three main components: 1) Plan recognition
module: maps the input sequence to a distribution in the latent plan space. 2) Plan proposal
module: generates multiple conditional prior solutions based on the current and goal states.
3) Plan and goal-conditioned policy: predicts actions conditioned on the current state,
goal state, and a latent plan sampled from the plan proposals. Similar to GCBC, both the
observation sequence length and the predicted action sequence length are restricted to 5
steps. The model is trained end-to-end.

* MimicPlay [51]: MimicPlay employs a hierarchical learning framework consisting of two
training stages. In the high-level training stage, the model takes the robot’s end-effector
pose, along with the current visual observation and goal observation, as input to predict
the future pose trajectory of the robot’s end-effector. This component is referred to as the
high-level planner. In the low-level training stage, the high-level planner with the best
validation performance from the previous stage is loaded and its parameters are frozen. The
model then continues training using a 9-dimensional robot proprioceptive state and visual
observations (both current and goal) as input to predict the robot’s actions.

Please note that in the original MimicPlay low-level training setup, in addition to the current
front-view RGB image, a wrist-mounted RGB image is also used as input, which may
contribute to its higher success rate. To ensure a fair comparison with our method, we
modify this setup by replacing the wrist-mounted image with a duplicate front-view image
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Table 7: Additional evaluation on long-horizon tasks. 7 indicates methods using a sequence of
visual frames as goals rather than a single goal image, with an extended observation length of
10 frames versus the standard 2. I indicates methods with access to extra wrist-mounted camera
images. The wrist views, extended observation sequence, and extended goal sequences provide
richer observational and task-guidance information for augmented baselines. Ours achieves similar
performance compared to the baseline with access to wrist view images, extended observation
sequences and a sequence of goal images, which demonstrates the effectiveness of our method in
achieving long-horizon tasks with much less guidance information (effort).

Coffee Prep.t Kitchent
do dlI Avg.| d0O dl Avg.

MimicPlay-O'* 0.86 0.68 0.77 | 1.00 0.70 0.85 | 0.81
MimicPlay-M 0.34 0.00 0.17 | 0.86 0.18 0.52 | 0.35

C-BeT | 0.82 0.04 0.43|0.78 0.70 0.74 | 0.59

Hyper-GoalNet(G) | 0.80 0.50 0.65 | 1.00 0.88 0.94 | 0.80
Hyper-GoalNet 0.80 0.50 0.65 | 1.00 0.80 0.90 | 0.78

Method Avg.

Table 8: Comparison with augmented BeT. } represents extended context length and additional
wrist-view images. Although BeT is not originally designed as a goal-conditioned policy method, its
augmented version serves as a strong baseline. Our method still outperforms the augmented BeT.

Method | Cof.d0t | Cof.d21 | Mug. dlt | Avg

BeTt 0.66 0.42 0.26 0.45
Ours 0.94 0.62 0.46 0.67

during the low-level training process. Additionally, we adopt the same goal-specified strategy
as described above, rather than providing the entire prompt video as used in MimicPlay’s
original test-time evaluation setting.

Hyper-GoalNet(G) We introduce another variant of our method, Hyper-GoalNet(G), where the
hypernetwork backbone takes only a single goal image as input, without requiring the current image
during both training and testing phases. All other settings remain unchanged. During inference,
Hyper-GoalNet(G) generates the weights for the lightweight target policy only once and maintains
them fixed during rollouts, resulting in improved computational efficiency. As shown in Table [|and
Table [/} Hyper-GoalNet(G) still outperforms the baselines while utilizing a much smaller lightweight
policy network, demonstrating both the effectiveness and efficiency of our approach.

Comparison with BeT [45]. We conducted comparative experiments with Behavior Transformer
(BeT), a state-of-the-art approach for multi-modal behavioral learning. BeT employs k-means
clustering to discretize continuous actions and utilizes transformers to model categorical distributions
across action bins, incorporating an action correction head to refine discretized actions into continuous
ones. Despite not being explicitly designed as a goal-conditioned policy, BeT has emerged as a robust
baseline in current robot learning literature. Given that the original BeT implementation for the
Franka Kitchen task was limited to state space observations and lacked compatibility with Robosuite
tasks, we enhanced its architecture by incorporating a pretrained image encoder [32]. To strengthen
the baseline comparison, we augmented BeT with additional wrist camera observations—a feature
absent in our method—and extended the context length from 2 (used in our approach) to 4, which
typically facilitates more effective policy learning for BeT. Consequently, BeT acquires more image
observations per timestep than our method, while maintaining the same image resolution of 128x128
pixels.

Table 8] presents experimental results for some randomly selected tasks, where Cof. d0 and Cof. d2
represent Coffee dO and Coffee d2 tasks, respectively, and Mug. d1 denotes the Mug cleanup d1
task. Notably, despite utilizing reduced contextual information, our method demonstrates superior
performance across all tasks in terms of success rates. These results substantiate our method’s robust
capability in behavior learning, even under more constrained observational conditions.
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Comparison with C-BeT [8]. Conditional Behavior Transformer (C-BeT) is a goal-conditioned
version of BeT, a behavior prediction model that compresses an agent’s observation history and the
goal state into a compact latent representation using self-attention, which is then transformed along
with discrete action representations to efficiently predict the agent’s future behaviors. To ensure fair
comparison, we configured C-BeT with identical observation settings to our method, maintaining a
context length of 2 and utilizing a single goal image. The comparative results are presented in Table [6]
and Table[7]

Comparison with Original MimicPlay (MimicPlay-O). In the original MimicPlay experiment
setting, we retained the wrist image as an input during the low-level training stage. For the test-time
evaluation process, we provided the pretrained model with prompt videos in HDF5 format generated
by MimicGen. In contrast to our approach, MimicPlay-O has access to wrist-mounted camera images,
uses an extended observation length of 10 frames instead of 2, and utilizes a sequence of visual
frames as goals, rather than a single goal image configuration.

Comparison with another Modified MimicPlay (MimicPlay-M). In this experimental setting,
we removed the wrist image as an input during the low-level training stage, since the wrist image
is not easy to obtain for goal specification. For the test-time evaluation process, we provided the
pretrained model with prompt videos in HDFS5 format generated by MimicGen. Please note that this
experimental setup slightly differs from the one in our baseline setting. In contrast to our approach,
MimicPlay-M uses an extended observation length of 10 frames instead of 2, and utilizes a sequence
of visual frames as goals, rather than a single goal image configuration.

Efficiency Analysis. We evaluate the computational efficiency by measuring the average inference
time per action step during deployment. Table [9]presents the average inference latency per step across
different methods, measured over 40,000 steps on a single NVIDIA RTX 3090 GPU. Our proposed
Hyper-GoalNet(G) demonstrates superior computational efficiency while maintaining state-of-the-art
performance. This efficiency stems from our novel approach of dynamically generating weights for a
lightweight target policy. Specifically, Hyper-GoalNet(G) generates a suitable set of policy weights
at the beginning of each rollout based on the goal image. These weights remain fixed throughout the
execution, eliminating the need for repeated weight generation and thus significantly reducing the
computational overhead during deployment.

Table 9: Average Inference Time Per Step
Method | GCBC Play-LMP C-BeT | Hyper-GoalNet Hyper-GoalNet(G)

Time (ms) | 15.47 22.78 13.61 | 6.33 1.46

C Comparison with Other Hypernetworks

Architectural Ablation Studies. To evaluate the significance of our architectural choices, we
conducted comparative experiments with an alternative hypernetwork architecture, HyperZero,
maintaining identical experimental conditions across all other parameters. The quantitative
results, presented in Table [ demonstrate that HyperZero struggles to achieve task completion
under limited observational constraints. The training loss curve, illustrated in Figure [5] reveal a
notable disparity in learning efficiency - while our proposed architecture exhibits stable convergence,
HyperZero’s loss curve shows poor convergence characteristics when used in complex visuomotor
manipulation tasks. These findings substantiate the superior capacity of our hypernetwork in handling
the complex vision-based manipulation under partial observability.

D Policy Learning Details

Overview. A conventional sequential decision-making problem can be formalized as a discrete-time
finite Markov decision process (MDP) defined by a 7-tuple M = (O, A, P, r, po,, H), where:

* (O denotes the observation space,
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Figure 5: Loss Curve Comparison: HyperZero vs. Our Hypernetwork Architecture. With identical
hyperparameters, our hypernetwork demonstrates enhanced training stability and convergence effi-
ciency.

» A represents the action space,
e P.:0O x Ax O — R, defines the transition probability distribution,
* v € [0, 1] is the discount factor,

* H specifies the temporal horizon of the process.

In the context of imitation learning, we define a complete state-action trajectory as 7 =
(00, ag, ..., 0, a;), where the initial state is sampled as oy ~ pg(0g), actions are generated by the
policy a; ~ my(+|ot), and state transitions follow o;1 ~ P(-|o¢, at).

Traditionally, the objective in goal-conditioned decision-making problems is to identify an optimal
goal-conditioned policy 7y that maximizes the expected discounted reward:

T
n(me) = B-[Y_~'r(or, a1, 0141]0g)] (11)
t=0

However, our approach diverges from this conventional framework in several key aspects: Reward-
Free Learning: Operating within a behavior cloning paradigm, we lack access to explicit reward
signals. Instead, we aim to learn a goal-specific policy 7y that maps states to optimal actions
purely from demonstrations. Goal-Specific Policy Generation: Rather than learning a universal goal-
conditioned policy, our hypernetwork architecture generates specialized policies for specific goals,
conditioned on the current RGB observation and a target goal image. Non-Markovian Extension:
We relax the Markovian assumption to incorporate temporal dependencies. The resulting policy
formulation becomes:

mo(at|ot—1,0¢) (12)

This extended formulation enables the policy to leverage information from a context window of
length 2, enhancing its capacity to handle complex, temporally-dependent manipulation sequences.

Model Architecture. Our architectural design addresses the challenges of visuomotor manipulation
tasks, which require processing of high-dimensional visual inputs rather than simple state-based
representations. The architecture comprises several key components integrated to handle visual
and proprioceptive information effectively. Visual Processing Pipeline: To bridge the gap between
high-dimensional visual inputs and hypernetwork processing capabilities, we employ a pre-trained
visual encoder to compress RGB images into compact latent representations. This encoder’s
training follows a two-phase strategy: Initial phase (first 20 epochs): Parameters remain frozen to
establish stable feature representations; Fine-tuning phase: Parameters become trainable to optimize
task-specific visual features.
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along policy rollouts.
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Figure 7: Distance to the goal in the latent space along policy rollouts across different manipu-
lation tasks. The consistent decreasing trend across diverse tasks demonstrates that our learned latent
representations effectively capture the physical progress toward task goals, establishing meaningful
correspondence between latent-space distances and real-world task completion.

Hypernetwork Configuration. The hypernetwork receives encoded representations of both the
current and goal images, generating parameters for a lightweight MLP-based target policy. This
meta-learning approach enables dynamic policy adaptation based on specified goals while main-
taining computational efficiency. Beside the image encoder mentioned above, the action generation
incorporates several specialized components: Predictive Model: Implemented as an MLP operating in
the compressed latent space, leveraging the reduced dimensionality for efficient dynamics modeling,
Proprioceptive Encoder: A compact MLP processes low-dimensional proprioceptive states, providing
essential agent state information, Feature Integration: Temporal image features are concatenated
with proprioceptive information at each timestep, Target Policy: A lightweight MLP processes the
integrated features to generate appropriate control actions. This architecture efficiently handles the
complexity of visuomotor tasks while maintaining computational tractability through dimensionality
reduction and feature integration.

Training Details. Our framework implements an end-to-end training paradigm with controlled
experimental conditions for reproducibility. Using a fixed random seed, we partition the dataset into
950 training and 50 validation demonstrations across all tasks. Training employs a batch size of 256
and the Adam optimizer with an initial learning rate of 5 x 10~%, coupled with cosine annealing for
learning rate decay. The model trains for 500 epochs without weight decay or dropout regularization
in the hypernetwork component. The training and evaluation procedures were performed on a single
NVIDIA GeForce RTX 3090 or RTX 4090 GPU.
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Figure 8: The real robot workspace.

E Ablation Studies

We conducted ablation experiments to evaluate the impact of various methodological choices, with
quantitative results presented in Table [3] Figure[7]and Figure [6]illustrates the normalized distance
between current and goal states under different experimental configurations. Our analysis includes
several key variations:

* uf. at epoch 0. Full parameter unfreezing from epoch 0, where all model components are
trainable from initialization.

* w/o shapping. Removal of latent shaping technique detailed in Section[3.2]

* dist¢>start img. Alternative distance computation between current and start images, rather
than current and goal images.

* cos. dist. Implementation of cosine distance metric in place of Euclidean distance.

* C-Bet(w/ shaping). We implement C-Bet and incorporate our proposed additional shaping
method while maintaining the same experimental setup.

These systematic variations enable us to quantify the contribution of each design choice to the overall
system performance.

F Real Robot Experiment Setting

Real Robot Platform. All real-world experiments were conducted on a RealMan RMC-DA dual-
arm manipulator, which comprises two 7-degree-of-freedom robotic arms, each rated for a 5 kg
payload and fitted with a parallel-jaw gripper. While the platform supports bimanual manipulation,
this work focuses specifically on evaluating Hyper-GoalNet’s capabilities in single-arm tabletop
manipulation tasks. The extension to bimanual manipulation remains as future work. The robot is
mounted in front of a 1.25 m x 0.75 m tabletop, which serves as the exclusive workspace for all
manipulation tasks. A standardized set of test objects—ranging from simple geometric primitives
(e.g., cubes) to more complex shapes—is placed on the table according to predefined configurations.
And on the tabletop there might be some distractor object. To support perception, we employ an
overhead RGB-D sensor (Intel RealSense D435i). The entire workspace is shown in Figure [§]

Task Details. To validate the versatility and robustness of our method across a broad spectrum of
manipulation skills, we selected four representative tabletop tasks. Each task emphasizes a different
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Figure 9: Key phases of diverse manipulation tasks in real robot experimental evaluation.

core competency—object localization, precision grasping, and surface contact manipulation—and is
defined as follows:

* Pick-and-Place. The robot must perceive and localize a specified cubic object within the
workspace, plan a collision-free trajectory, execute a stable grasp, and transport the object to
a predefined target location (e.g., a plate). Success is measured by the accuracy of the final
placement and the repeatability across trials.

* Stacking. Extending the pick-and-place paradigm, this task requires the robot to grasp a
source cube, position it directly above a target cube resting on the tabletop, lower it until
gentle contact is detected via proximity or vision-based cues, and then release to complete
the stack. Success is defined by the source cube being neatly aligned atop the target cube.

e Drawer Pulling. The robot must detect drawer handle, plan an approach to engage the
handle with its gripper, and execute a controlled pulling maneuver to extend the drawer
along its linear guide. Performance is evaluated by the final extension distance achieved
without stalling.

* Sweeping. The end-effector is equipped with a broom attachment. The robot must locate
and gather a target object scattered on the tabletop, then sweep it into a designated collection
zone (e.g., a dustpan). Success is defined by the target object being fully contained within
the collection zone at the end of each trial.

Data Processing and Observation Space. Our real-robot evaluation follows the same protocol
as in simulation: at each timestep, the policy receives the two most recent observations and a single
goal image. We collect approximately 70—100 human teleoperation trajectories per task for training.
Vision is acquired with an Intel RealSense D435i depth camera; we concatenate its depth channel
with the RGB channels to form 4-channel images of resolution 128 x 128, which are normalized to
[0, 1] before input to the encoder. Since explicit end-effector poses are unavailable, we represent the
current proprioceptive state by the previous action—comprising seven joint angles and one gripper
command—resulting in an 8-dimensional vector. All modalities are synchronized identically to the
simulation setting, ensuring a seamless transfer between simulated and real-world experiments.

G Additional Visualization

We provide additional visualization of the shaping. Figure [T0] and Figure [IT] demonstrate the
approximate monotonic trend of the distance between the current state and the goal state is consistent
across different task scenarios. This consistent pattern substantiates the robustness of our shaping
mechanism and validates its task-agnostic applicability.
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Figure 10: Additional visualization: Distance to the goal in the latent space along policy
rollouts across different manipulation tasks. The consistent decreasing trend across diverse tasks
demonstrates that our learned latent representations effectively capture the physical progress toward

task goals, establishing meaningful correspondence between latent-space distances and real-world
task completion.

H Limitations and Future Work

Limitations. When the target state space becomes very large or the task becomes more complex,
the ability to represent the latent space may be challenged. In more complex long-term planning
tasks, our latent space shaping depends on having trajectories that progress toward goals, which may
not be available in all datasets. Additionally, our method still relies on demonstration data, which
may not be available for all tasks.
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Additional visualization: Distance to the goal in the latent space along policy

rollouts across different manipulation tasks. The consistent decreasing trend across diverse tasks
demonstrates that our learned latent representations effectively capture the physical progress toward
task goals, establishing meaningful correspondence between latent-space distances and real-world

task completion.

Future Work. Building upon our current findings, we identify three primary directions for future
research: First, we aim to incorporate multi-goal reasoning to handle complex sequential tasks.
Second, we plan to extend our framework by integrating foundation models to develop a more gener-
alized policy generation framework, potentially enabling broader task generalization and enhanced
adaptability across diverse manipulation scenarios. Third, we plan to combine our parameter-adaptive
approach with reinforcement learning to reduce dependence on demonstration data.
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