MEAM 5200 INTRODUCTION TO RoBoTICS FALL 2025

Final Project Report - Team 5

Wanting Yao 38010041, Chunyu Jiang 49660776, Tianyi Xia 85060087, Yanran Yi 68669276

1 Introduction

In this project, we develop a unified manipulation pipeline capable of autonomously detecting,
grasping, and stacking both static and dynamic blocks to maximize the final score under strict
safety and interface constraints.

Our approach leverages end-effector-mounted vision to estimate block poses via AprilTag de-
tections and transforms these observations into the robot base frame. For static blocks, the system
performs sequential perception-driven pick-and-place actions, aligning end-effector orientation with
block geometry and stacking objects incrementally on the goal platform. For dynamic blocks, we im-
plement a predictive grasping strategy that estimates angular velocity from multiple time-stamped
observations, forecasts the future block pose, and synchronizes robot motion with the estimated
arrival time to enable successful closed-loop interception.

We extensively evaluate our methods in both simulation and the real world. In simulation, our
approach achieves a 100% success rate for static blocks and approximately 55% for dynamic blocks.
We analyze the failure cases of our methods in both simulation and the real world, and discuss two
key lessons learned from this project: the sim-to-real gap and the principle of “less is more.”

2 Methodology

In this section, we will introduce the algorithmic design and key implementation details for the
static block task and the dynamic block task. By integrating perception, kinematics, motion
planning, control, and gripper-level feedback, the proposed framework enables robust pick-and-
place operations in both stationary and dynamic settings.

2.1 Static Blocks

The static block pipeline follows a perception-driven, sequential pick-and-place strategy, consisting
of system initialization, block detection and filtering, pose transformation and alignment, inverse
kinematics-based motion planning, grasp execution with feedback validation, and incremental place-
ment with loop supervision. The objective of the static block task is to reliably detect all stationary
blocks located on the static platform, grasp them one by one, and stack them onto the designated
goal platform while satisfying safety and workspace constraints.

To achieve this, our algorithm tightly integrates vision-based perception with kinematic planning
and low-level gripper feedback. The pipeline begins by moving the robot to a predefined observation
pose to ensure robust AprilTag detection. Detected block poses are then transformed into the robot
base frame and adjusted to enforce grasp-friendly orientations. For each valid block, pre-grasp
and grasp configurations are generated using inverse kinematics to ensure collision-free motion.

° qdynamic_ bserve

- | Gintermediate_place aynami wait.
\ . = ‘lll zynamic,pwk
]
| |
(a) Execution loop of the first static (b) Execution loop of the first dynamic
block grasp-and-place cycle, starting from block grasp-and-place cycle, starting from

dobserve- qdynamic_observe-

Figure 1: Overview of static and dynamic pick-and-place execution loops.

Grasping success is subsequently validated using gripper state feedback before the block is placed
onto the goal platform with an incrementally updated height. This process repeats until all valid
static blocks have been successfully transferred and no further blocks remain.

Fig. 1a illustrates the execution loop of the first grasp-and-place cycle in the static block task,
starting from the observation pose qobserve and proceeding through grasping and placement.

2.1.1 System Initialization and Observation Setup

For a better view of detection, the robot arm is moved to the static pick observation pose, gobserve,
which is solved by Inverse Kinematics IK_solver from the homography transformation matrix we

10 0 0.562

set for the initial observation pose Hpick = | 8 (1) _01 _0%%)6 | , and the gripper is opened to the default

000 1
width as the initialization for the static setting.

2.1.2 Static Block Detection and Filtering

After initialization, the function choose_all block() is called for block detection and selection.
The function retrieves all valid detected blocks (supposed to be 4 blocks) from the vision system
using detector.get_detections(), and filters them to identify valid static blocks for manipula-
tion. Specifically, it excludes blocks that are outside the robot’s reachable workspace or located on
the wrong side of the table, or simply wrong detections, based on spatial and height constraints.

Since we observed that the real-world camera has a narrower field of view, we set the observation
configuration higher than necessary in simulation to ensure that the robot can detect all static blocks
at the beginning of the real-world experiments.

2.1.3 Pose Transformation and Orientation Alignment

In this module, the detected block pose is transformed from the camera frame to the robot base
frame based on the following formula

base __ rybase ryee camera
Hblock - Hee HcameraHblock ’ (1)
where H,i’ﬁoﬁ denotes the current end-effector pose obtained via forward kinematics, HSS,,.,, is the

calibrated camera-to-end-effector transform, and Hy?",*"¢ represents the detected block pose in the

camera frame. Using the function align orientation() and choose_xy most_positive() with
the resulting pose, orientation constraints (mainly yaw, which is the rotation in the x-y plane, taken
from blocks) are enforced to ensure a physically feasible and stable grasp. The adjustment follows
a three-stage pipeline, shown below

e Enforce the z-axis to keep vertical.

0 0 1 010
H,‘,,,:[l 0 0] Hagj=10 0 1
01

0.

N £\)
\ , /7
T 7% ﬁﬂ\ | x

1723
x

Figure 2: Vertical z-axis constraint during orientation alignment to ensure a stable top-down grasp.

e Normalize three axes and force the z-axis to point down.

e We evaluate four candidate yaw rotations in the horizontal plane and select the orientation
that maximizes alignment between the end-effector’s planar axis and a team-specific positive
reference direction by minimizing the angular deviation from the world-frame axis.

4 | . «"7,‘ 90° l:mﬂ Y y :17““
S 7 T i
/ M \]/ \]/ \l/ X IL\I/,

world frame

Figure 3: Yaw selection strategy, where four candidate planar rotations are evaluated, and the ideal
orientation is selected.

Finally, for implementation in real world, small position offsets are applied to the 4th column
of H Il)’l‘ffc‘z to compensate for perception noise and improve grasp reliability, producing a well-aligned
target pose for a higher success rate.

2.1.4 Inverse Kinematics and Motion Planning

In this module, the robot executes the planned grasp motion and determines whether the grasp is
successful using gripper feedback. We created the function grab_a block() for this module. The
end-effector first moves to a pre-grasp pose Qintermediate, Which is calculated by IK_solver from
the Hpicr pi, to ensure a collision-free approach. The H,.; p; matrix is calculated based on the
aligned block pose by adding a vertical offset along the z-axis by 15¢m. Then the robot moves
to the target configuration @¢arget, which is solved by IK_solver from Hgﬁ)ic}g and the gripper
is commanded from the preset configuration of position and force. After executing the gripper
command, the robot arm will return to @;ntermediate-

To ensure a quick response and feedback from the system, we try two different ways for gripper
status checking. The first method is using the provided function get_gripper_state() of the
ArmController, which returns both the position and force of each finger of the gripper. The
second method (which is also the original idea of us) is to subscribe to the gripper joint state topic
(/franka_gripper/joint_states) and monitor the finger joint positions in real time. By recording
the gripper opening width after the grasp command is executed, we can determine whether an object

is successfully held between the fingers. If the measured gripper opening exceeds a predefined
threshold (4cm in simulation), the grasp is considered successful; otherwise, the grasp is treated
as a failure, and recovery behaviors are triggered. The threshold for the real-world setting needs
to be set in the lab session and rehearsal session. And the recovery behavior in this module is to
re-detect the left blocks and continue grasping the new target.

2.1.5 Incremental Placement and Stacking

In the incremental placement and stacking module, the robot places each successfully grasped

static block onto the target platform while maintaining a stable and progressively increasing stack
01 0 0.56+Az

10 0 0.164+Ay

00 -1 Ztarget] and
00 0 1

height. We predefined the target position of the first placement, Hpjace red = [

10 0 0.56+Ax
01 0 —0.16—Ay

Hplace blue = [0 0 -1] for red and blue settings, respectively. The Az, Ay and zarget should

Ztarget

be modified dl(l)r(i]ng the llab and rehearsal session. After a block is successfully placed, the desired
placement pose is updated by incrementing the vertical position along the z-axis by 5¢m to account
for previously stacked blocks.

Moreover, to ensure a safer and more stable movement, we align the end-effector orientation
with the grasping pose so that the robot does not need to rotate its last joint in the pick-and-place
process, which we find is very helpful to save time.

Similarly, we have @intermediate_place S0lved from IK_solver for a safer placement above the
target placement position by 10cm. After the robot safely moves to the target pose qiarget place;
the gripper is then opened to release the block with the predefined configuration. Then the robot
returns to g_intermediate and prepares for the next turn.

2.1.6 Loop Control and Termination

In the loop control and termination module, the system supervises the overall static block manip-
ulation process and determines whether additional actions are required. Based on the number of
successfully-transferred blocks, if there are more valid blocks available to be picked, which indicates
that the number is less than four, the robot will continue another round of execution of all steps
introduced above. Otherwise, the static block routine is terminated, and the robot arm will move
to the initial pose for dynamic block observation.

2.2 Dynamic Blocks

The dynamic block task extends the static manipulation pipeline to handle objects in continuous
motion on a rotating turntable. The objective of this task is to detect, track, and intercept moving
blocks by synchronizing robot motion with the predicted future state of the target.

To achieve this, our algorithm integrates vision-based detection, temporal state estimation,
motion prediction, and time-aware grasp execution into a closed-loop pipeline. The system first
moves the robot to a predefined dynamic observation pose to ensure reliable perception, then
selects a suitable dynamic block for interception based on spatial constraints. After transforming
the detected block pose into the robot base frame, the block’s angular velocity and instantaneous
radius are estimated from consecutive observations. Using this information, the future pose of the
block at a predefined grasping location is predicted, and a target grasp pose is generated with
enforced orientation constraints. Inverse kinematics is subsequently solved to compute a time-
synchronized grasp motion, followed by grasp execution, placement, and recovery behaviors. This

perception—prediction—execution loop repeats until termination conditions are met, enabling robust
and repeatable dynamic block manipulation under both simulation and real-world settings.
Fig. 1b visualizes a single iteration of the dynamic block manipulation loop.

2.2.1 System Initialization and Dynamic Observation Setup

For dynamic block manipulation, the robot arm is first moved to a predefined dynamic observation
POSe, Qdynamic.observe, Which provides a clear and stable view of the rotating turntable. This
pose is a manually defined pose in configuration space, separately solved by IK_solver for each
team side, and ensures that the end-effector-mounted camera continuously observes the motion of
dynamic blocks, which should also be slightly modified manually in the configuration space, based
on the real-world scene. The gripper is opened to a default configuration, and the system waits
until at least one valid dynamic block is detected before proceeding.

2.2.2 Dynamic Block Detection and Selection

Once initialized, the system repeatedly queries the vision module using detector.get_detections()
to identify dynamic blocks currently visible in the camera frame. Among all detected blocks, a selec-
tion strategy choose_best_dynamic_block() is applied to choose the most suitable dynamic block
for interception. For each detected dynamic block, its position in the robot base frame is evaluated
against task-specific spatial constraints to determine whether it lies within a feasible interception
region.

In the real-world setting, blocks are filtered based on their vertical position on the turntable, and
the block with the smallest forward distance y is selected as the target. In simulation, additional
constraints are applied to exclude blocks moving in unfavorable regions of the workspace. Among all
candidate blocks that satisfy these constraints, the block with the smallest ¥ is chosen by minimizing
a distance metric. This selection strategy ensures consistent tracking of a single dynamic block and
improves the robustness of subsequent motion prediction and timed grasp execution.

2.2.3 Pose Transformation and Temporal State Estimation

Similar to the transformation chain in the static pipeline, after a dynamic block is selected, its pose
is transformed from the camera frame to the robot base frame using Eq.(1).

To estimate the block’s motion, two observations are taken at distinct timestamps (with a 1-
second interval). If the target is tracked successfully in two observations, based on the transformed
positions of the block at these two time instants, the angular velocity of the block is computed
assuming circular motion around the turntable center using Eq.(2),

Oy — 61
w= ,
to — 11

(2)

where 01 = arctan(by, ay), 02 = arctan(be, as), and ¢, to are two consecutive timestamps of detection
attained from time_in_seconds(). The block’s angular position and velocity are then used to
estimate its future arrival time at a predefined grasping location. If the target is missing in the
second observation, the system will stop calculating and re-detect for a new target.

Also, we calculated the instantaneous radius of the target block using Eq.(3), and the corre-
sponding variables are shown in Fig. 4.

_ V(e +69) + /(a3 + b3)
5 ,

3)

Figure 4: Illustration of the instantaneous radius r estimation for the dynamic target block

2.2.4 Future Pose Prediction and Grasp Pose Generation

Using the estimated angular velocity and the predefined grasping location, Haynamic_pick red =

01 0 00 010 0.0
[(1) 90 8:%2] , and Hgynamic_pick_blue = [(1) 8 _01 _0(_)325] , the future pose of the dynamic block is predicted
000 1

by propagating its orientation forwardoino tinie. Concretely, we first compute the target angular
position of the predefined grasping point as #3 = arctan(bs, as), where a3 = Haynamic pick[0, 3] and
by = 0.99 — demmic_pick[l, 3], which need to be measured in real-world scene. Given the current
block angular position #, (measured at time t5) and the estimated angular velocity w, the expected
arrival time of the block at the grasping point is computed as

3 — 02
w

: (4)

tarr =

To reject outliers caused by noisy detections or incorrect velocity estimation, we discard predictions
with excessively large arrival time (e.g., oy > 255) and re-enter the detection loop.

In addition, we update the grasping point on the fly using the instantaneous turntable radius r
from the previous two consecutive observations Eq.(3) to match the observed radius. Specifically,
the y-coordinate of the grasping point is updated such that the interception location lies on the
same circular trajectory as the moving block, while the grasping height is set to a predefined value
“dynamic a8 Eq(5)

Tdynamic

ppick(r) = [£(0.99 — 7+ Ay) | , (5)

Zdynamic

where Taynamic = Hdynamic_pick|0, 3], and zgynamic = 0.18m, which is a preset offset based on the
robot’s performance. Moreover, the Ay should be measured from the real-world scene, which
represents the real difference of distance between the robot base frame to the turntable center.

After determining the predicted time-to-arrival, we propagate the block orientation forward
by t.r using a planar rotation about the z-axis and then combine it with the updated grasp-
ing translation to obtain the final target grasp pose. Orientation alignment constraints are en-
forced to keep the end-effector z-axis vertical and ensure a graspable configuration, and a dis-
crete yaw selection is further applied to choose a collision-safe wrist orientation using the function
predict_block_pose_and align() following Eq.(6).

Rpred = R(tl) Rz (w tarr)y

. |:Rp_r|_ed Ppick(T)] ’ (6)

H, 0 1

P

2.2.5 Inverse Kinematics and Motion Planning

Given the predicted grasp pose, inverse kinematics is solved to obtain a target joint configuration
for dynamic grasping. A pre-grasp configuration is generated by lifting the end-effector along the
vertical axis z by 15c¢m to create a safe waiting pose qdynamicwait above the grasp location. The
robot first moves to this pre-grasp configuration and remains there until the estimated arrival time
of the dynamic block is reached, ensuring temporal synchronization between the robot motion and
the block trajectory.

2.2.6 Dynamic Block Placement and Recovery

After a successful dynamic grasp, the robot transports the block to the goal platform and places
it using an incremental stacking strategy similar to that of static blocks. Placement poses are
adjusted based on the number of successfully placed blocks to ensure stable stacking. To detect
successful grasp and placement, we utilize the same strategy as that in the static setting. We detect
the gripper state directly after grasping and before placement. If the gripper is detected closed
after grasping, it indicates that the gripper doesn’t hold anything after grasping, which is marked
as a failed grasp. Or if the gripper is detected open before placement, which means the gripper is
in the process of transferring the block, which is marked as a successful placement. In the event of
placement failure, recovery behaviors are triggered to maintain system robustness, and the robot
will directly return to the dynamic observation pose, gqaynamic-observe-

2.2.7 Loop Control and Termination

The dynamic block pipeline operates in a continuous loop until termination conditions are met.
If repeated grasp attempts fail or no valid dynamic blocks are detected within a reasonable time
window, the system safely exits the dynamic block routine. Otherwise, the pipeline repeats the
perception—prediction—execution cycle to attempt additional dynamic block manipulations.

3 Challenge and Evaluation

3.1 Metrics

First, we will use those in Tab. 1 as our metrics, which are success rate, stability rate, and max
height. For efficiency, we will observe cycle time and recovery success rate. And we will also observe
the positioning and pose of each action to make sure the coordinate system is working well.

3.2 Evaluation

In general, the evaluation metrics are utilized for evaluation both qualitatively and quantitatively.
Concretely, for the static blocks, we will make sure the parameters are fine-tuned each time. And
the parameters are predefined poses and the offsets for grasping and placement. Also, we will test
the robustness of our algorithms as much as possible.

For the dynamic blocks, we still need to fine-tune parameters for initial poses and offsets.
Another parameter for dynamic blocks is the waiting durations. Also, to make our algorithm more
stable, we need to try different ways to improve the current performance. And it is important to
improve the performance of the angular speed prediction.

More details during evaluation in both simulation and real-time scene are demonstrated in the
following Results and Analysis part.

Table 1: Evaluation Metrics for Manipulation Performance

Category Metric Description
Graspine Performance Success Rate Percentage of successful grasp attempts for
Ping individual stationary or dynamic blocks.
Failure Rate Percentage of grasp attempts that fail due to
missed grasp, slippage, or perception error.
Stackine Performance Stability Rate Percentage of trials in which 4 blocks are suc-
& cessfully stacked without collapse.
Max Height Maximum number of blocks stacked verti-

cally on the goal platform during a trial.

Efficiency Cycle Time Average time required.to complete one full
grasp-and-place operation.

Recovery Success Rate Percentage of failed grasp attempts from
which the system successfully recovers and
starts a new attempt.

Accuracy Pose Error Position and orientation error between the

target end-effector pose and the actual
achieved pose at execution time.

3.3

Challenges and Improvement

The challenges we encountered during tests and the corresponding improvements will be introduced.

3.3.1

Static Setting

Challenges We introduce several major challenges in the static setting.

1.

First, uncalibrated offsets and non-ideal gripper behavior, or visual detection interference
(such as occlusion or detection jitter), can make the robot pick inaccurately.

. Errors will be accumulated during grasp and placement, which may cause the stacked tower

to lean or collapse.

. The overall speed is not fast enough for a higher score in the competition.

. Finally, because of these issues, the placement location may need to be adjusted dynamically

as we refine our strategy.

Improvements Improvements are presented in the same order as the challenges discussed above.

1.

We introduce offset terms into the estimated homography transformation matrix H}jﬁoﬁ and

the position for placement to compensate for intrinsic camera-robot calibration errors and
other systematic errors in the system. These offsets must be carefully and accurately cali-
brated in real-world experimental settings; therefore, to simplify the calibration procedure,
the number of offset parameters is deliberately kept limited.

2.

To enhance grasp and placement robustness, we explicitly control the gripper orientation

throughout the manipulation process. The gripper is first aligned with the detected block ori-

. 01 0
entation during grasping. During placement, the gripper orientation is set to Rpjqce = [(1) 0 _01]

to align the end-effector with the positive y-direction. Once the stacking height exceeds ap-
proximately 0.56m, the gripper orientation is switched to an alternative configuration to

ensure sufficient clearance and stable stacking.

. Under safe operating conditions, we reduce the number of intermediate poses from six to four.

. We design four task execution strategies on top of the dynamic block manipulation pipeline,

considering different sequences of static and dynamic tasks and different placement positions.
But the only one that was tested in the real world is the first strategy that adopts a straight-
forward approach, in which all static and dynamic blocks are sequentially grasped and stacked
at the center of the target table.

3.3.2 Dynamic Setting

Challenges We introduce several major challenges in the dynamic setting.

1.

We often experience unsuccessful continuous block tracking. Missed or false detections can
cause the tracker to lose the block or produce unstable measurements, as the current system
and algorithm are unstable. This can also lead to angular velocity prediction.

. Grasp time needs to be more accurate. Since it takes time for the gripper to take action, we

need to modify the grasp time based on the real-world performance; otherwise, it will cause
collision risk between the gripper and the block.

. Due to inaccurate prediction, and since our grasp algorithm for dynamic blocks requires high

precision of command, the gripper is easy to collide with the block with inaccurate orientation.

. The overall speed is not fast enough for a higher score in the competition.

. The gripper status is different between the simulation and different real scenes, which will

lead to wrong detection of success.

Improvements Improvements are presented in the same order as the challenges discussed above.

1.

First, we fixed the bug in the angular velocity estimation pipeline, where erroneous detections
could lead to incorrect 6 calculations and consequently inaccurate arrival time predictions.
Second, we discard target candidates whose estimated arrival time exceeds 25 seconds, as
detections of objects far from the camera are more prone to noise and geometric errors.
Moreover, we filter out obviously invalid angular velocity w estimates to prevent unsafe or
unstable robot behaviors during execution. Also, it is also a useful way to select a good
observation pose for a better field of view.

. It is necessary to obtain the real distance from the robot base to the center of the turntable,

which will help a lot for all the following calculations. Also, an offset for waiting time might
be added according to the performance to compensate for any other potential errors.

. The end-effector’s orientation is aligned to the predicted target pose using the function

predict_block_pose_and_align(), which extrapolates the block orientation to the estimated
arrival time t,,, under a constant angular velocity assumption.

4. We removed one intermediate pose while modifying others to maintain stable operations.

5. We created a data logging module to record all essential data through the task process,
including the gripper status, to ensure we can track all errors and parameters to be modified.

4 Results and Analysis

4.1 Parameters and Offsets

Here in Tab. 2, we demonstrate all parameters and offsets that need to be fine-tuned in lab and

rehearsal sessions for accurate operations and better real-scene performance.

Table 2: Parameter Settings for Red and Blue Robots in Real-World Experiments

Parameter Red Blue
z 0.235 0.235
x offset 0.025 —0.020
y offset 0.035 0.020
Target z 0.190 0.195
Target « offset 0.000 0.000
Target y offset 0.000 0.000
Dynamic z 0.235 0.180
Dynamic x offset 0.000 0.000
Dynamic y offset 0.010 0.005
Wait time (s) 2.7 1.0
Lift-up distance 0.15 0.15

4.2 Simulation

In simulation, we conducted exhaustive experiments on both the red and blue robots and report
the running time, success rate (SR), scores, as well as failure cases for dynamic blocks over five
rounds in Tab. 3. Our static blocks pick-and-place strategy achieves 100% success rate in all 10
runs. While our dynamic blocks grasping strategy achieves success rates of 58.3% and 54.5% on
red and blue robots, respectively. This high success rate for static blocks grasping demonstrates
the robustness of our static strategy and the feasibility of our prediction-based dynamic strategy.

Table 3: Performance Comparison on Static and Dynamic Block Manipulation

Static Blocks

Dynamic Blocks

Robot Rd Score Avg. Score
Time(s) SR Cycle Time(s) SR SR-5 min Failure Cases SR
1 111.07 4/4 3/5 due to recover: 2 20500
2 111.84 4/4 3/5 fail to grab: 1; recover: 1 20500
Red 3 11135 4/4 27.79 100% 3/4 fail to grab: 1 58.3% 20500 19200
4 109.87 4/4 2/5 fail to grab: 2; fail to place: 1 14000
5 111.59 4/4 3/5 fail to grab: 1; recover: 1 20500
1 121.87 4/4 3/4 fail to grab: 1 20500
2 11591 4/4 2/4 fail to grab: 1; fail to place: 1 14000
Blue 3 118.60 4/4 29.49 100% 3/5 fail to grab: 2 54.5% 20500 16800
4 115.78 4/4 3/5 recover: 1; fail to place: 1 20500
5 117.70 4/4 1/4 fail to grab: 1; fail to place: 2 8500

10

Failure Cases Analysis During our experiments, we observe three major kinds of failure cases:
(1) due to our recovery strategy; (2) robot fails to grab the dynamic block; and (3) the block drops
from the placing pose. Here are the possible reasons that cause these kinds of failures.

1. Due to recovery strategy. The algorithm incorrectly determines that the gripper fails to
grasp the block and therefore opens the gripper, dropping a block that was actually grasped
successfully. We analyzed the . csv files recorded from the simulation and found many errors in
the gripper state data obtained from the simulator. For example, when the robot successfully
grasped a block, the distance between the two gripper fingers was sometimes surprisingly
larger than the threshold of 4cm. This is abnormal because we assume the block is rigid, so
the distance between the gripper fingers should be smaller than the side length of the block,
which is 5em. This behavior may be caused by imperfections in the Gazebo simulation and
noise in the gripper sensor data.

2. Fail to grab. This failure is directly caused by incorrect prediction of the picking location
or an unsuitable waiting time. The underlying cause of both issues is noise in the perception
module. Noise during block detection can lead to incorrect angular velocity estimation,
which in turn results in improper waiting times and inaccurate orientation prediction. During
testing, we found that the first several attempts at dynamic block grasping had higher success
rates than later ones. This may be due to error accumulation in the simulation.

3. Fail to grasp. This failure is caused by an imperfect grasping pose, which results in unstable
placement on top of other blocks. The primary reason is noise in block detection, causing the
robot to fail to properly align the gripper with the block’s orientation.

Static Blocks Running Time Analysis In Tab. 3, we observe that the blue robot requires
more time than the red robot to grasp static blocks. We intentionally changed the blue robot’s
grasping orientation to demonstrate the effectiveness of our “aligning the grasping and placing
orientation” strategy. For the red robot, both the picking and placing poses have the camera facing
the positive y-axis. In contrast, the blue robot uses the same placing pose, but its picking pose has
the camera facing the positive x-axis. As a result, the blue robot must rotate its last joint more to
reach the same placing pose, which leads to increased execution time.

4.3 Real Scene

Figure 5: Real robot performance during the competition.

In the real robot competition, we obtained 2250 points and 1500 points on the red and blue
robots, respectively, as shown in Fig. 5. Recordings of the final challenge competition are available

11

at this link. During the competition, the blue robot failed to grasp two static blocks because
we encountered issues with the vision pipeline during rehearsal and therefore did not tune its
static offset. Despite this, the blue robot successfully grasped two static blocks and two dynamic
blocks within the 3-minute time limit and successfully placed one of them. This demonstrates the
robustness of our dynamic block grasping strategy in real-world settings.

In contrast, the red robot, which was properly tuned with the static offset, successfully stacked
all four static blocks in the challenge. However, it encountered a collision while placing the fourth
block. After analyzing the video recordings, we believe this was caused by an incorrect “is placing
successful” detection. Specifically, the system may have mistakenly marked the third placement as
unsuccessful, causing the robot to attempt to place the fourth block at the same location. This
resulted in a collision with the third block, which was unfortunate and prevented us from testing
our dynamic grasping strategies.

One reason we achieved significantly higher scores in simulation is that the perception module
does not require calibration in the simulated environment. Another reason is that, in simulation,
when the robot fails to grasp a block and slightly collides with it, the system can recover from the
collision and continue operating.

5 Lessons Learned

One bitter lesson we learned is the sim-to-real gap. Although our robot achieved a 100% success
rate grasping and stacking static blocks in simulation, performance degraded significantly on the
real robot due to real-world offsets. After setting the offsets properly, we were also able to achieve a
nearly 100% success rate in the lab sessions. However, because we were unable to adjust the offsets
within the limited rehearsal time, the robot failed to grasp the static blocks of the blue team during
the competition. These results emphasize the importance of real-world testing and debugging. In
the era of embodied intelligence, bridging the sim-to-real gap is crucial for reliable transfer from
simulation to physical robots.

Another essential insight we gained is that “less is more”. For the sake of competition, having
the robot’s gripper directly moved to the rotating turntable and just waiting for the blocks to
come is actually a simpler and yet much more efficient approach to grasp the dynamic blocks. Our
initial intention was to grasp the dynamic blocks in a more graceful way, including moving to the
observation position above the turntable, observing the blocks, calculating the time of arrival, and
moving to the grasping position. This approach is indeed elegant and effective, yet it failed to
perform efficiently within limited time during the competition.

During the project, the robot reliably executed the commanded actions. However, the detection
system performed poorly in real-world conditions, introducing small offsets in the estimated target
positions. As a result, although the robot executed the actions correctly, the actions themselves
were based on inaccurate inputs, ultimately leading to grasping failures. Furthermore, careful
calibration was required for the robot to reach a position with the correct field of view; however,
even with calibration, the vision pipeline still failed occasionally.

In conclusion, although it is unfortunate that our carefully tuned algorithm did not achieve the
desired performance in the final competition due to offset-related issues, we are deeply grateful for
the opportunity provided by this final project. This project allowed us to apply the concepts and
techniques learned throughout the course to both simulation and real-world manipulation tasks
using the Franka Panda robot. Through extensive system integration, debugging, and real-robot
experimentation, we gained valuable hands-on experience and a deeper understanding of the gap
between simulation and real-world deployment. Overall, this project significantly strengthened our
determination to work on real-world robot problems.

12

https://drive.google.com/drive/folders/1ZPDFeMnVB9apN4z8fWn7iO611me31tFK?dmr=1&ec=wgc-drive-globalnav-goto

	Introduction
	Methodology
	Static Blocks
	System Initialization and Observation Setup
	Static Block Detection and Filtering
	Pose Transformation and Orientation Alignment
	Inverse Kinematics and Motion Planning
	Incremental Placement and Stacking
	Loop Control and Termination

	Dynamic Blocks
	System Initialization and Dynamic Observation Setup
	Dynamic Block Detection and Selection
	Pose Transformation and Temporal State Estimation
	Future Pose Prediction and Grasp Pose Generation
	Inverse Kinematics and Motion Planning
	Dynamic Block Placement and Recovery
	Loop Control and Termination

	Challenge and Evaluation
	Metrics
	Evaluation
	Challenges and Improvement
	Static Setting
	Dynamic Setting

	Results and Analysis
	Parameters and Offsets
	Simulation
	Real Scene

	Lessons Learned

