
Undergraduate Experiment Report
Trajectory Planning

Wanting Yao 3210100894

Minghe Wang 3210102120

Erzat Abdnur 3210106206

Shener Chen 3210103954

Yuxin Huang 3210103751

Yi Zhang 3210102174

Siyun Wen 3190104714

April. 11, 2024

Group: 3 Experiment: Trajectory Planning Report 2

Contents

I Purpose ⋅ 1

II Content and Principles ⋅ 1
1. Find the Poses of the Blocks ⋅ 1

2. Trajectory Planning Method ⋅ 1
2.1 Non-linear trajectory planning ⋅ 2

2.2 Linear trajectory planning⋅ 3

III Main Instrumentation ⋅ 3

IV Results and Analysis ⋅ 3
1. Non-linear Trajectory Planning ⋅ 4

2. Linear Trajectory Planning ⋅ 5

V Discussion ⋅ 6

VI Appendix ⋅ 6

List of Figures

1 the final status of the simulation . 4
2 the blocks are placed in the right place . 4
3 the non-linear segments of the curves . 5
4 the linear segments of the curves . 5

Major: Automation
Date: April. 11, 2024
Place: Online

Course: Robot Modeling and Control Instructor: Chunlin Zhou Tutor: Yinuo Yu
Experiment: Trajectory Planning Experiment Type: Validation Grade:

I Purpose

1) Master the robotic arm trajectory planning methods.
2) Learn how to use the CoppeliaSim simulation tool to simulate the motion of the ZJU-I robotic arm.
3) In the simulation, transport the four blocks from the starting place through the dyeing pool to the

destination and place them according to the requirement.

II Content and Principles

1. Find the Poses of the Blocks

Through the simulation environment layout, we can get the starting point and the endpoint of the dye-
ing pool, as well as the destination of the four blocks. By calling the function sim.getObjectPose() and
sim.getObjectOrientation() , we can get the position and orientation of the starting point of the four blocks

respectively.

2. Trajectory Planning Method

We split the process of transporting a single block into seven phases. For example, when transporting the
first block, we denote the starting state of each phase as 𝑞0, 𝑞1, 𝑞2, 𝑞𝑙𝑒𝑓𝑡, 𝑞𝑟𝑖𝑔ℎ𝑡, 𝑞3, 𝑞4:

• 𝑞0: The initial joint angles.
• 𝑞1: The joint angles at the sucking point of the block.
• 𝑞2: The joint angles when the robotic arm has sucked and lifted the block.
• 𝑞𝑙𝑒𝑓𝑡: The joint angles when the robotic arm reaches the left side of the dyeing pool.
• 𝑞𝑟𝑖𝑔ℎ𝑡: The joint angles when the robotic arm reaches the right side of the dyeing pool.
• 𝑞3: The joint angles when the robotic arm reaches the place above where the object is to be placed.
• 𝑞4: The joint angles when the robotic arm places the block.

To obtain the above joint angles, we first get the poses of each state in the world coordinate system (as
shown above), then substitute them into the IK solver and manually pick the legitimate one to get the joint
angles. The code for solving the joint angles is as below:

q1 = iks.solve(np.array([0.4, 0.12, 0.15, -np.pi, 0, -48/180*np.pi]))[:,2]

The seven phases are the movement processes of the robotic arm between states. They can be divided
into linear movement phases (𝑞𝑙𝑒𝑓𝑡 → 𝑞𝑟𝑖𝑔ℎ𝑡) and non-linear movement phases, and the two different types of
phases need to use different trajectory planning methods as shown below.

1

Group: 3 Experiment: Trajectory Planning Report 2

2.1 Non-linear trajectory planning

For this type of trajectory planning, we use the quintic polynomial solution:

𝑞(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡2 + 𝑎3𝑡3 + 𝑎4𝑡4 + 𝑎5𝑡5

The constraints are:
⎧{
⎨{⎩

𝑞(0) = 𝑞0 𝑞(𝑡) = 𝑞𝑓
𝑞′(0) = 𝑞′

0 𝑞′(𝑡) = 𝑞′
𝑓

𝑞′′(0) = 𝑞′′
0 𝑞′′(𝑡) = 𝑞′′

𝑓

Hence, the following equation can be obtained:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑡5
0 𝑡4

0 ⋯ 1
𝑡5
𝑓 𝑡4

𝑓 ⋯ 1
5𝑡4

0 4𝑡3
0 ⋯ 0

5𝑡4
𝑓 4𝑡3

𝑓 ⋯ 0
20𝑡3

0 12𝑡2
0 ⋯ 0

20𝑡3
𝑓 12𝑡2

𝑓 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑞0
𝑞𝑓
𝑞′

0
𝑞′

𝑓
𝑞′′

0
𝑞′′

𝑓

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The coefficients of the quintic polynomial can be obtained by solving the matrix equation. We can get the
joint angles of the robotic arm at any time by substituting the time t into the quintic polynomial function.

The above procedures are shown in function trajPlanningDemo() as follows.

def trajPlaningDemo(start, end, t, time):
""" Quintic Polynomial: x = k5*t^5 + k4*t^4 + k3*t^3 + k2*t^2 + k1*t + k0
:param start: Start point
:param end: End point
:param t: Current time
:param time: Expected time spent
:return: The value of the current time in this trajectory planning
"""
if t < time:

tMatrix = np.matrix([
[0, 0, 0, 0, 0, 1],
[time**5, time**4, time**3, time**2, time, 1],
[0, 0, 0, 0, 1, 0],
[5*time**4, 4*time**3, 3*time**2, 2*time, 1, 0],
[0, 0, 0, 2, 0, 0],
[20*time**3, 12*time**2, 6*time, 2, 0, 0]])

xArray = []
for i in range(len(start)):

xArray.append([start[i], end[i], 0, 0, 0, 0])
xMatrix = np.matrix(xArray).T

kMatrix = tMatrix.I * xMatrix

timeVector = np.matrix([t**5, t**4, t**3, t**2, t, 1]).T
x = (kMatrix.T * timeVector).T.A[0]

2

Group: 3 Experiment: Trajectory Planning Report 2

else:
x = end

return x

2.2 Linear trajectory planning

Linear trajectory planning restricts the positional changes of the robotic arm in the world coordinate
system. Here we use the segmented sampling method, where the straight line is segmented first, and the
joint angles of each point on the line can be obtained using the IK solver. Due to the large number of segments,
the position change of each segment is very small, so we can directly use the move() function to move the
robotic arm from one end of the segment to the other one by one, which in the end enables the robotic arm to
move in a straight line.

def LineartrajPlanning(start, end, t, time):
if t < time:

r = int(t / time * num_line_points)
res = spline_q_lists[r]

else:
res = spline_q_lists[num_line_points-1]

if True in np.isnan(res):
print("trajPlaning(): NAN")
return False

return res

First, we generate the set of points spline_q_lists , in which all the points are on the line beween the
left and right points of the dyeing pool. Then we get the position (joint angles) of the robotic arm according
to the segmentation interval in which the time is located. Finally, we call function move() to move the
robotic arm from the previous point in the set to the next point. Therefore the linear trajectory planning is
accomplished.

III Main Instrumentation

1) ZJU-I Desktop Manipulator
2) Robot Joint Module
3) CoppeliaSim
4) Python, Matlab, VSCode

IV Results and Analysis

According to the above procedure, we accomplished the trajectory planning task, and the final status in
the simulation is shown below in figure 1. The total process of transporting the blocks took one minute and
seventeen seconds. The curve of acceleration, velocity, and position of each joint angle is fairly smooth. In
the screen recording (included in the file folder), the robotic arm moved the blocks in the order of Cube 1 -
Prism 1 - Cube 2 - Prism 2.

3

Group: 3 Experiment: Trajectory Planning Report 2

Figure 1: the final status of the simulation

The final poses of the four blocks are shown in figure 2, and we can see all the blocks are in the right place
as required.

Figure 2: the blocks are placed in the right place

Also, we would like to analyze the acceleration, velocity, and position curves of the transporting process.
We intercept the linear and nonlinear parts of the entire curve and analyze them respectively.

1. Non-linear Trajectory Planning

The linear segments of the curves are depicted in figure 3. Since we use the quintic polynomial to do
trajectory planning, the velocity of the joint angles is a quartic polynomial while the acceleration is a cubic

4

Group: 3 Experiment: Trajectory Planning Report 2

polynomial. So they are both smooth curves without sharp changes.

(a) Acceleration (b) Velocity (c) Position

Figure 3: the non-linear segments of the curves

2. Linear Trajectory Planning

The linear segments of the curves are depicted in figure 4. We adopted the segmented sampling method,
so we can see that the velocity and acceleration curves fluctuate regularly. Since this is a uniform motion, the
acceleration curve exhibits slight fluctuations near zero, while the velocity curve shows minor variations around
the predetermined velocity value. The joint position transitions smoothly, resembling a roughly linear process.

(a) Acceleration (b) Velocity (c) Position

Figure 4: the linear segments of the curves

5

Group: 3 Experiment: Trajectory Planning Report 2

V Discussion

In this experiment, we worked together to solve the problems and gained a deeper idea of Euler angles,
inverse kinematics, trajectory planning, and other concepts.

In the process of via points selection, the inverse kinematics solution can be weird for an angle out of
range, in which case we need to adjust the angle by adding or subtracting times of pi. Constantly, joint angle
velocity may exceed constraints, so we need to make sure the angle changes between two adjacent positions
aren’t too large.

VI Appendix

1 #python
2 #luaExec wrapper='pythonWrapper' -- using the old wrapper for backw. compat.
3 # To switch to the new wrapper, simply remove above line, and add sim=require('sim')
4 # as the first instruction in sysCall_init() or sysCall_thread()
5 # from IK.IKSolver import IKSolver
6 import numpy as np
7 import sys, getpass
8 sys.path.append(f"C:/Users/{getpass.getuser()}/Documents/IK")
9 print(f"C:/Users/{getpass.getuser()}/Documents/IK")

10 import IK
11

12 ####################################
13 ### You Can Write Your Code Here ###
14 ####################################
15

16 def sysCall_init():
17 # initialization the simulation
18 doSomeInit() # must have
19

20 #--
21 # using the codes, you can obtain the poses and positions of four blocks
22 pointHandles = []
23 for i in range(2):
24 pointHandles.append(sim.getObject('::/Platform1/Cuboid' + str(i+1) + '/SuckPoint'))
25 for i in range(2):
26 pointHandles.append(sim.getObject('::/Platform1/Prism' + str(i+1) + '/SuckPoint'))
27 # get the pose of Cuboid/SuckPoint
28 for i in range(4):
29 print(sim.getObjectPose(pointHandles[i], -1))
30 #---
31

32

33 #---
34 # following codes show how to call the build-in inverse kinematics solver
35 # you may call the codes, or write your own IK solver
36 # before you use the codes, you need to convert the above quaternions to X-Y'-Z' Euler angels
37 # you may write your own codes to do the conversion, or you can use other tools (e.g. matlab)

6

Group: 3 Experiment: Trajectory Planning Report 2

38

39 iks = IK.IKSolver()
40 # return the joint angle vector q which belongs to [-PI, PI]
41 # Position and orientation of the end-effector are defined by [x, y, z, rx, ry, rz]
42 # x,y,z are in meters; rx,ry,rz are X-Y'-Z'Euler angles in radian
43 #---
44

45 """ this demo program shows a 3-postion picking task
46 step1: the robot stats to run from the rest position (q0)
47 step2: the robot moves to the picking position (q1) in 5s
48 step3: turn on the vacumm gripper and picking in 0.5s
49 step4: lift a block to position (q2) in 3s
50 step5: the robot moves from q2 back to the rest positon q0
51 q0 - initial joint angles of the robot
52 q1 - joint angles when the robot contacts with a block
53 q2 - final joint angels of the robot
54 """
55 global q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, q16
56 global l, r, left, right
57 q0 = np.zeros(6) # initialize q0 with all zeros
58 # angles of joint 1-6 obtained by solving the inverse kinematics
59

60 l = np.array([0.1, 0.35, 0.2])
61 r = np.array([-0.1, 0.35, 0.2])
62 left = iks.solve(np.array([0.1, 0.35, 0.2, np.pi, 0, -np.pi/2]))[:,2]
63 print("left")
64 print(left)
65 right = iks.solve(np.array([-0.1, 0.35, 0.2, np.pi, 0, -np.pi/2]))[:,2]
66 print("right")
67 print(right)
68 '''
69 # 1st block
70 q1 = iks.solve(np.array([0.4, 0.12, 0.15, -np.pi, 0, -48/180*np.pi]))[:,2] # pick
71 q2 = iks.solve(np.array([0.4, 0.12, 0.16, np.pi, 0, -np.pi/2]))[:,2]
72 q3 = iks.solve(np.array([-0.35, 0, 0.25, np.pi, 0, -np.pi/2]))[:,2]
73 q4 = iks.solve(np.array([-0.35, 0, 0.2, np.pi, 0, -np.pi/2]))[:,2] # place
74

75 # 2nd block
76 q5 = iks.solve(np.array([0.4, 0.04, 0.125, -142.2/180*np.pi, 26.5/180*np.pi, 120/180*np.pi]))[:,2]
77 print("q5")
78 print(q5)
79 q5[5] += np.pi
80 print("q5")
81 print(q5)
82 q6 = iks.solve(np.array([0.4, 0.04, 0.16, np.pi, 0, -np.pi/2]))[:,2]
83 q7 = iks.solve(np.array([-0.35, 0.05, 0.2, 0.75 * np.pi, 0, np.pi/2]))[:,2]
84 q8 = iks.solve(np.array([-0.35, 0.05, 0.176, 0.75 * np.pi, 0, np.pi/2]))[:,2]
85

86

7

Group: 3 Experiment: Trajectory Planning Report 2

87 # 3rd block
88 q9 = iks.solve(np.array([0.4, -0.04, 0.125, 136.4/180*np.pi, 12.4/180*np.pi, -12.75/180*np.pi]))[:,2]

pick↪

89 q10 = iks.solve(np.array([0.4, -0.04, 0.25, np.pi, 0, -np.pi/2]))[:,2]
90

91 q11 = iks.solve(np.array([-0.35, -0.0515, 0.26, -0.75 * np.pi, 0, np.pi]))[:,2]
92 q11[0] += 2*np.pi
93 q12 = iks.solve(np.array([-0.35, -0.0515, 0.2, -0.75 * np.pi, 0, np.pi]))[:,2] # place
94 q12[0] += 2*np.pi
95

96 #4th block
97 q13 = iks.solve(np.array([0.4, -0.12, 0.15, np.pi, 0, -134/180*np.pi]))[:,2]
98

99 q14 = iks.solve(np.array([0.4, -0.12, 0.16, np.pi, 0, -np.pi/2]))[:,2]
100

101 q15 = iks.solve(np.array([-0.35, 0, 0.3, np.pi, 0, -np.pi/2]))[:,2]
102

103 q16 = iks.solve(np.array([-0.35, 0, 0.255, np.pi, 0, -np.pi/2]))[:,2]
104 '''
105

106 # 1st block
107 q1 = iks.solve(np.array([0.4, 0.12, 0.15, -np.pi, 0, -70/180*np.pi]))[:,2] # pick
108 print("q1")
109 print(q1)
110 q2 = iks.solve(np.array([0.4, 0.12, 0.16, np.pi, 0, -np.pi/2]))[:,2]
111 print("q2")
112 print(q2)
113 q3 = iks.solve(np.array([-0.35, 0, 0.25, np.pi, 0, -np.pi/2]))[:,2]
114 q3[5] -= np.pi
115 print("q3")
116 print(q3)
117 q4 = iks.solve(np.array([-0.35, 0, 0.2, np.pi, 0, -np.pi/2]))[:,2] # place
118 q4[5] -= np.pi
119 print("q4")
120 print(q4)
121

122 # 2nd block
123 #q5 = iks.solve(np.array([0.4, 0.04, 0.125, -144.108/180*np.pi, 29.21/180*np.pi, 30/180*np.pi]))[:,2]
124 q5 = iks.solve(np.array([0.4, 0.04, 0.125, -144.108/180*np.pi, 29.21/180*np.pi, 120/180*np.pi]))[:,2]
125 print("q5")
126 print(q5)
127 q5[5] += np.pi
128 print("q5")
129 print(q5)
130 q6 = iks.solve(np.array([0.4, 0.04, 0.16, np.pi, 0, -np.pi/2]))[:,2]
131 print(q6)
132 q7 = iks.solve(np.array([-0.35, 0.05, 0.2, 0.75 * np.pi, 0, - np.pi/2]))[:,2]
133 q7[5] -= np.pi
134 print(q7)

8

Group: 3 Experiment: Trajectory Planning Report 2

135 q8 = iks.solve(np.array([-0.35, 0.05, 0.176, 0.75 * np.pi, 0, -np.pi/2]))[:,2]
136 q8[5] -= np.pi
137 print("q8")
138 print(q8)
139

140

141 # 3rd block
142 q9 = iks.solve(np.array([0.4, -0.04, 0.125, 138.233/180*np.pi, 18.549/180*np.pi,

-19.608/180*np.pi]))[:,2] # pick↪

143 q10 = iks.solve(np.array([0.4, -0.04, 0.25, np.pi, 0, -np.pi/2]))[:,2]
144

145 q11 = iks.solve(np.array([-0.35, -0.0515, 0.26, -0.75 * np.pi, 0, np.pi]))[:,2]
146 q11[0] += 2*np.pi
147 q12 = iks.solve(np.array([-0.35, -0.0515, 0.2, -0.75 * np.pi, 0, np.pi]))[:,2] # place
148 q12[0] += 2*np.pi
149

150 #4th block
151 q13 = iks.solve(np.array([0.4, -0.12, 0.15, np.pi, 0, -76/180*np.pi]))[:,2]
152

153 q14 = iks.solve(np.array([0.4, -0.12, 0.16, np.pi, 0, -np.pi/2]))[:,2]
154

155 q15 = iks.solve(np.array([-0.35, 0, 0.3, np.pi, 0, -np.pi/2]))[:,2]
156

157 q16 = iks.solve(np.array([-0.35, 0, 0.255, np.pi, 0, -np.pi/2]))[:,2]
158

159

160

161 print("!!!!!!!!!!!!!!!!!!!!!!!!!")
162 print("!!!!!!!!!!!!!!!!!!!!!!!!!")
163

164 global move_time, lift_time, wait_time, statetime, return_time
165 move_time = 3.5 # move t
166 lift_time = 2 # lift t
167 wait_time = 0.1 # wait t
168 statetime = 0.1 # state t
169 return_time = 5 # q0 t
170

171 global spline_points, spline_q_lists, num_line_points
172 num_line_points = 1000
173 spline_q_lists=[]
174 spline_points = [(l + (r - l) * i / num_line_points) for i in range(num_line_points)]
175 for i in range(num_line_points):
176 spline_q_lists.append(iks.solve(np.append(spline_points[i], [np.pi, 0, -np.pi/2]))[:,2])
177 if True in np.isnan(spline_q_lists[i]):
178 spline_q_lists[i] = spline_q_lists[i-1]
179

180 def sysCall_actuation():
181 # put your actuation code in this function
182

9

Group: 3 Experiment: Trajectory Planning Report 2

183 # get absolute time, t
184 t = sim.getSimulationTime()
185

186 # 1st block
187 offset = 0
188

189 if offset <= t:
190 if t < offset + move_time * 1 - statetime:
191 q = trajPlaningDemo(q0, q1, t-offset, move_time-wait_time-statetime)
192 state = False
193 elif t < offset + move_time * 1:
194 q = q1
195 state = True
196 elif t < offset + move_time * 1 + lift_time * 1:
197 q = trajPlaningDemo(q1, q2, t-(offset + move_time * 1), lift_time-wait_time)
198 state = True
199 elif t < offset + move_time * 2 + lift_time * 1:
200 q = trajPlaningDemo(q2, left, t-(offset + move_time * 1 + lift_time * 1),

move_time-wait_time)↪

201 state = True
202 elif t < offset + move_time * 3 + lift_time * 1:
203 q = LineartrajPlanning(l, r, t-(offset + move_time * 2 + lift_time * 1), move_time)
204 state = True
205 elif t < offset + move_time * 4 + lift_time * 1:
206 q = trajPlaningDemo(right, q3, t-(offset + move_time * 3 + lift_time * 1),

move_time-wait_time)↪

207 state = True
208 elif t < offset + move_time * 4 + lift_time * 2 - statetime:
209 q = trajPlaningDemo(q3, q4, t-(offset + move_time * 4 + lift_time * 1),

lift_time-wait_time-statetime)↪

210 state = True
211 elif t < offset + move_time * 4 + lift_time * 2:
212 q = q4
213 state = False
214 elif t < offset + move_time * 4 + lift_time * 2 + return_time:
215 q = trajPlaningDemo(q4, q0, t-(offset + move_time * 4 + lift_time * 2),

return_time-wait_time)↪

216 state = False
217

218 # 2nd block
219 offset = (move_time * 4 + lift_time * 2 + return_time)
220 if offset <= t:
221 if t < offset + move_time * 1 - statetime:
222 q = trajPlaningDemo(q0, q5, t-offset, move_time-wait_time-statetime)
223 state = False
224 elif t < offset + move_time * 1:
225 q = q5
226 state = True
227 elif t < offset + move_time * 1 + lift_time * 1:

10

Group: 3 Experiment: Trajectory Planning Report 2

228 q = trajPlaningDemo(q5, q6, t-(offset + move_time * 1), lift_time-wait_time)
229 state = True
230 elif t < offset + move_time * 2 + lift_time * 1:
231 q = trajPlaningDemo(q6, left, t-(offset + move_time * 1 + lift_time * 1),

move_time-wait_time)↪

232 state = True
233 elif t < offset + move_time * 3 + lift_time * 1:
234 q = LineartrajPlanning(l, r, t-(offset + move_time * 2 + lift_time * 1), move_time)
235 state = True
236 elif t < offset + move_time * 4 + lift_time * 1:
237 q = trajPlaningDemo(right, q7, t-(offset + move_time * 3 + lift_time * 1),

move_time-wait_time)↪

238 state = True
239 elif t < offset + move_time * 4 + lift_time * 2 - statetime:
240 q = trajPlaningDemo(q7, q8, t-(offset + move_time * 4 + lift_time * 1),

lift_time-wait_time-statetime)↪

241 state = True
242 elif t < offset + move_time * 4 + lift_time * 2:
243 q = q8
244 state = False
245 elif t < offset + move_time * 4 + lift_time * 2 + return_time:
246 q = trajPlaningDemo(q8, q0, t-(offset + move_time * 4 + lift_time * 2),

return_time-wait_time)↪

247 state = False
248

249 # 3rd block
250 offset = (move_time * 4 + lift_time * 2 + return_time) * 2
251 #offset = 0
252 if offset <= t:
253 if t < offset + move_time * 1 - statetime:
254 q = trajPlaningDemo(q0, q9, t-offset, move_time-wait_time-statetime)
255 state = False
256 elif t < offset + move_time * 1:
257 q = q9
258 state = True
259 elif t < offset + move_time * 1 + lift_time * 1:
260 q = trajPlaningDemo(q9, q10, t-(offset + move_time * 1), lift_time-wait_time)
261 state = True
262 elif t < offset + move_time * 2 + lift_time * 1:
263 q = trajPlaningDemo(q10, left, t-(offset + move_time * 1 + lift_time * 1),

move_time-wait_time)↪

264 state = True
265 elif t < offset + move_time * 3 + lift_time * 1:
266 q = LineartrajPlanning(l, r, t-(offset + move_time * 3 + lift_time * 1), move_time)
267 state = True
268 elif t < offset + move_time * 4 + lift_time * 1:
269 q = trajPlaningDemo(right, q11, t-(offset + move_time * 3 + lift_time * 1),

move_time-wait_time)↪

270 state = True

11

Group: 3 Experiment: Trajectory Planning Report 2

271 elif t < offset + move_time * 4 + lift_time * 2 - statetime:
272 q = trajPlaningDemo(q11, q12, t-(offset + move_time * 4 + lift_time * 1),

lift_time-wait_time-statetime)↪

273 state = True
274 elif t < offset + move_time *4 + lift_time * 2:
275 q = q12
276 state = False
277 elif t < offset + move_time * 4 + lift_time * 2 + return_time:
278 q = trajPlaningDemo(q12, q0, t-(offset + move_time * 4 + lift_time * 2),

return_time-wait_time)↪

279 state = False
280

281 # 4th block
282 offset = (move_time * 4 + lift_time * 2 + return_time) * 3
283 if offset <= t:
284 if t < offset + move_time * 1 - statetime:
285 q = trajPlaningDemo(q0, q13, t-offset, move_time-wait_time-statetime)
286 state = False
287 elif t < offset + move_time * 1:
288 q = q13
289 state = True
290 elif t < offset + move_time * 1 + lift_time * 1:
291 q = trajPlaningDemo(q13, q14, t-(offset + move_time * 1), lift_time-wait_time)
292 state = True
293 elif t < offset + move_time * 2 + lift_time * 1:
294 q = trajPlaningDemo(q14, left, t-(offset + move_time * 1 + lift_time * 1),

move_time-wait_time)↪

295 state = True
296 elif t < offset + move_time * 3 + lift_time * 1:
297 q = LineartrajPlanning(l, r, t-(offset + move_time * 2 + lift_time * 1), move_time)
298 state = True
299 elif t < offset + move_time * 4 + lift_time * 1:
300 q = trajPlaningDemo(right, q15, t-(offset + move_time * 3 + lift_time * 1),

move_time-wait_time)↪

301 state = True
302 elif t < offset + move_time * 4 + lift_time * 2 - statetime:
303 q = trajPlaningDemo(q15, q16, t-(offset + move_time * 4 + lift_time * 1),

lift_time-wait_time-statetime)↪

304 state = True
305 elif t < offset + move_time * 4 + lift_time * 2:
306 q = q16
307 state = False
308 elif t < offset + move_time * 4 + lift_time * 2 + return_time:
309 q = trajPlaningDemo(q16, q0, t-(offset + move_time * 4 + lift_time * 2),

return_time-wait_time)↪

310 state = False
311 if t >= (move_time * 4 + lift_time * 2 + return_time) * 4:
312 sim.pauseSimulation()
313 else:

12

Group: 3 Experiment: Trajectory Planning Report 2

314 runState = move(q, state)
315

316 """
317 The following codes shows a procedure of trajectory planning using the 5th-order polynomial
318 You may write your own code to replace this function, e.g. trapezoidal velocity planning
319 """
320 def LineartrajPlanning(start, end, t, time):
321 if t < time:
322 r = int(t / time * num_line_points)
323 res = spline_q_lists[r]
324 else:
325 res = spline_q_lists[num_line_points-1]
326

327 if True in np.isnan(res):
328 print("trajPlaning(): NAN")
329 return False
330 return res
331

332 def trajPlaningDemo(start, end, t, time):
333 """ Quintic Polynomial: x = k5*t^5 + k4*t^4 + k3*t^3 + k2*t^2 + k1*t + k0
334 :param start: Start point
335 :param end: End point
336 :param t: Current time
337 :param time: Expected time spent
338 :return: The value of the current time in this trajectory planning
339 """
340 if t < time:
341 tMatrix = np.matrix([
342 [0, 0, 0, 0, 0, 1],
343 [time**5, time**4, time**3, time**2, time, 1],
344 [0, 0, 0, 0, 1, 0],
345 [5*time**4, 4*time**3, 3*time**2, 2*time, 1, 0],
346 [0, 0, 0, 2, 0, 0],
347 [20*time**3, 12*time**2, 6*time, 2, 0, 0]])
348

349 xArray = []
350 for i in range(len(start)):
351 xArray.append([start[i], end[i], 0, 0, 0, 0])
352 xMatrix = np.matrix(xArray).T
353

354 kMatrix = tMatrix.I * xMatrix
355

356 timeVector = np.matrix([t**5, t**4, t**3, t**2, t, 1]).T
357 x = (kMatrix.T * timeVector).T.A[0]
358

359 else:
360 x = end
361

362 return x

13

Group: 3 Experiment: Trajectory Planning Report 2

363

364

365 ##
366 ### You Don't Have to Change the following Codes ###
367 ##
368

369 def doSomeInit():
370 global Joint_limits, Vel_limits, Acc_limits
371 Joint_limits = np.array([[-200, -90, -120, -150, -150, -180],
372 [200, 90, 120, 150, 150, 180]]).transpose()/180*np.pi
373 Vel_limits = np.array([100, 100, 100, 100, 100, 100])/180*np.pi
374 Acc_limits = np.array([500, 500, 500, 500, 500, 500])/180*np.pi
375

376 global lastPos, lastVel, sensorVel
377 lastPos = np.zeros(6)
378 lastVel = np.zeros(6)
379 sensorVel = np.zeros(6)
380

381 global robotHandle, suctionHandle, jointHandles
382 robotHandle = sim.getObject('.')
383 suctionHandle = sim.getObject('./SuctionCup')
384 jointHandles = []
385 for i in range(6):
386 jointHandles.append(sim.getObject('./Joint' + str(i+1)))
387 sim.writeCustomDataBlock(suctionHandle, 'activity', 'off')
388 sim.writeCustomDataBlock(robotHandle, 'error', '0')
389

390 global dataPos, dataVel, dataAcc, graphPos, graphVel, graphAcc
391 dataPos = []
392 dataVel = []
393 dataAcc = []
394 graphPos = sim.getObject('./DataPos')
395 graphVel = sim.getObject('./DataVel')
396 graphAcc = sim.getObject('./DataAcc')
397 color = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1]]
398 for i in range(6):
399 dataPos.append(sim.addGraphStream(graphPos, 'Joint'+str(i+1), 'deg', 0, color[i]))
400 dataVel.append(sim.addGraphStream(graphVel, 'Joint'+str(i+1), 'deg/s', 0, color[i]))
401 dataAcc.append(sim.addGraphStream(graphAcc, 'Joint'+str(i+1), 'deg/s2', 0, color[i]))
402

403 def sysCall_sensing():
404 # put your sensing code here
405 if sim.readCustomDataBlock(robotHandle,'error') == '1':
406 return
407 global sensorVel
408 for i in range(6):
409 pos = sim.getJointPosition(jointHandles[i])
410 if i == 0:
411 if pos < -160/180*np.pi:

14

Group: 3 Experiment: Trajectory Planning Report 2

412 pos += 2*np.pi
413 vel = sim.getJointVelocity(jointHandles[i])
414 acc = (vel - sensorVel[i])/sim.getSimulationTimeStep()
415 if pos < Joint_limits[i, 0] or pos > Joint_limits[i, 1]:
416 print("Error: Joint" + str(i+1) + " Position Out of Range!")
417 sim.writeCustomDataBlock(robotHandle, 'error', '1')
418 return
419

420 if abs(vel) > Vel_limits[i]:
421 print("Error: Joint" + str(i+1) + " Velocity Out of Range!")
422 sim.writeCustomDataBlock(robotHandle, 'error', '1')
423 return
424

425 if abs(acc) > Acc_limits[i]:
426 print("Error: Joint" + str(i+1) + " Acceleration Out of Range!")
427 sim.writeCustomDataBlock(robotHandle, 'error', '1')
428 return
429

430 sim.setGraphStreamValue(graphPos,dataPos[i], pos*180/np.pi)
431 sim.setGraphStreamValue(graphVel,dataVel[i], vel*180/np.pi)
432 sim.setGraphStreamValue(graphAcc,dataAcc[i], acc*180/np.pi)
433 sensorVel[i] = vel
434

435 def sysCall_cleanup():
436 # do some clean-up here
437 sim.writeCustomDataBlock(suctionHandle, 'activity', 'off')
438 sim.writeCustomDataBlock(robotHandle, 'error', '0')
439

440

441

442 def move(q, state):
443 if sim.readCustomDataBlock(robotHandle,'error') == '1':
444 return
445 global lastPos, lastVel
446 for i in range(6):
447 if q[i] < Joint_limits[i, 0] or q[i] > Joint_limits[i, 1]:
448 print("move(): Joint" + str(i+1) + " Position Out of Range!")
449 return False
450 if abs(q[i] - lastPos[i])/sim.getSimulationTimeStep() > Vel_limits[i]:
451 print("move(): Joint" + str(i+1) + " Velocity Out of Range!")
452 return False
453 if abs(lastVel[i] - (q[i] - lastPos[i]))/sim.getSimulationTimeStep() > Acc_limits[i]:
454 print("move(): Joint" + str(i+1) + " Acceleration Out of Range!")
455 return False
456

457 lastPos = q
458 lastVel = q - lastPos
459

460 for i in range(6):

15

Group: 3 Experiment: Trajectory Planning Report 2

461 sim.setJointTargetPosition(jointHandles[i], q[i])
462

463 if state:
464 sim.writeCustomDataBlock(suctionHandle, 'activity', 'on')
465 else:
466 sim.writeCustomDataBlock(suctionHandle, 'activity', 'off')
467

468 return True

16

	Purpose
	Content and Principles
	Find the Poses of the Blocks
	Trajectory Planning Method
	Non-linear trajectory planning
	Linear trajectory planning

	Main Instrumentation
	 Results and Analysis
	Non-linear Trajectory Planning
	Linear Trajectory Planning

	Discussion
	Appendix

